

Product Portfolio 2022

Pumps I Automation

150 YEARS FLOW ROUND

2

Type Series Index

A 17					
Amacan K	48	Hya-Duo D FL-R	43	RVT	66
Amacan P	48	Hya-Rain / Hya-Rain N	40	RWCP / RWCN	39
Amacan S	49	Hya-Rain Eco	40		
		2		Cofety Doort	
Amaclean	45	Hya-Solo D	42	Safety Boost	44
Amacontrol	69	Hya-Solo D FL	42	Sewabloc	51
AmaDrainer 3	44	Hya-Solo D FL Compact	43	Sewatec	51
AmaDrainer 4 / 5	44	Hyatronic N	69	Sewatec SPN	51
AmaDrainer 80/100	44			SEZ	62
AmaDrainer-Box	45	ILN	30	SEZT	62
AmaDrainer-Box Mini	45	ILNC	31	SNW	63
Amaline	50	ILNR	31	SPY	63
Amamix	50	INVCP	38	SRA	47
Ama-Porter CK Pump Station	47	Ixo N	41	SRL	47
Ama-Porter F / S	44	Ixo-Pro	41	Surpress Feu SFE	43
Amaprop	50			•	
Amarex	48	KSB Delta Basic	42	ТВС	52
Amarex KRT	48	KSB Delta Macro	41	TDW	54
				1 D VV	54
Amarex N	48	KSB Delta Primo	42		
AU	55	KSB Delta Solo	42	UPA 200, UPA 250	56
AU Monobloc	55	KSB Delta Solo/Basic Compact	41	UPA 300, UPA 350	56
		KSB Guard	27	UPA 400 - UPA 1100	57
B Pump	57	KSB Leakage Sensor	27	UPA C 100 EE	56
Beveron	63	KSB SuPremE	26	UPA C 100 EN	56
		KSB UMA-S	26	UPA C 150	56
Calio	29	KWP	51		57
				UPA D	
Calio Pro	29	KWP-Bloc	51	UPA \$ 200	57
Calio Pro Z	29			UPA Control	68
Calio S	29	LCC-M	52		
Calio Z	29	LCC-R	52	Vitacast	60
Calio-Therm	28	LCV	53	Vitacast Bloc	60
Calio-Therm NC	28	LevelControl Basic 2	68	Vitachrom	59
Calio-Therm S	28	LHD	53	Vitalobe	60
Calio-Therm S NC/NCV	28	LSA	52	Vitaprime	60
Cervomatic EDP.2	68	LUV / LUVA	62	Vitastage	60
CHTA / CHTC / CHTD	61	LUV Nuclear	65		
CHTR	38			WBC	52
CHTRa	38	Magnochem	36	WKTB	62
CINCP / CINCN	38	Magnochem 685	36	WKTR	39
				VVNIN	29
CK 800 Pump Station	46	Magnochem-Bloc	36		
CK 1000 Pump Station	46	MDX	53	YNK	61
Comeo	58	Megabloc	33		
Compacta	46	MegaCPK	34	ZW	54
Controlmatic E	68	Megaline	31		
Controlmatic E.2	68	Meganorm	33		
	35	MHD	53		
CPKN					
CPKNO	35	mini-Compacta	46		
CTN	37	MK / MKY	45		
		Movitec	58		
		Mouther LL/C)	58		
DU / EU	67	Movitec H(S)I			
DU / EU DWD	67 54	Movitec VCI	58		
DWD	54	Movitec VCI Multi Eco	58 40		
DWD EDS	54 67	Movitec VCI Multi Eco Multi Eco-Pro	58 40 40		
DWD EDS Estigia	54 67 38	Movitec VCI Multi Eco Multi Eco-Pro Multi Eco-Top	58 40 40 40		
DWD EDS Estigia Etabloc	54 67 38 32	Movitec VCI Multi Eco Multi Eco-Pro Multi Eco-Top Multitec	58 40 40 40 58		
DWD EDS Estigia	54 67 38 32 34	Movitec VCI Multi Eco Multi Eco-Pro Multi Eco-Top	58 40 40 40		
DWD EDS Estigia Etabloc	54 67 38 32	Movitec VCI Multi Eco Multi Eco-Pro Multi Eco-Top Multitec	58 40 40 40 58		
DWD EDS Estigia Etabloc Etabloc SYT	54 67 38 32 34	Movitec VCI Multi Eco Multi Eco-Pro Multi Eco-Top Multitec	58 40 40 40 58		
DWD EDS Estigia Etabloc Etabloc SYT Etachrom B Etachrom L	54 67 38 32 34 32 32 32	Movitec VCI Multi Eco Multi Eco-Pro Multi Eco-Top Multitec Multitec-RO	58 40 40 58 66		
DWD EDS Estigia Etabloc Etabloc SYT Etachrom B Etachrom L Etachrom L Etaline	54 67 38 32 34 32 32 32 30	Movitec VCI Multi Eco Multi Eco-Pro Multi Eco-Top Multitec Multitec-RO Omega	58 40 40 58 66 59		
DWD EDS Estigia Etabloc Etabloc SYT Etachrom B Etachrom L Etaline Etaline Etaline SYT	54 67 38 32 34 32 32 30 34	Movitec VCI Multi Eco Multi Eco-Pro Multi Eco-Top Multitec Multitec-RO Omega PHZ	58 40 40 58 66 59 62		
DWD EDS Estigia Etabloc Etabloc SYT Etachrom B Etachrom L Etaline Etaline Etaline SYT Etaline Z	54 67 38 32 34 32 32 30 30 34 30	Movitec VCI Multi Eco Multi Eco-Pro Multi Eco-Top Multitec Multitec-RO Omega PHZ PNW	58 40 40 58 66 59 62 63		
DWD EDS Estigia Etabloc Etabloc SYT Etachrom B Etachrom L Etaline Etaline SYT Etaline Z Etaline R	54 67 38 32 34 32 32 30 34 30 30 30	Movitec VCI Multi Eco Multi Eco-Pro Multi Eco-Top Multitec Multitec-RO Omega PHZ PNW PNZ	58 40 40 58 66 59 62 63 63		
DWD EDS Estigia Etabloc Etabloc SYT Etachrom B Etachrom L Etaline Etaline SYT Etaline Z Etaline R Etaline-R Etaline-R Etanorm	54 67 38 32 34 32 32 30 34 30 30 31	Movitec VCI Multi Eco Multi Eco-Pro Multi Eco-Top Multitec Multitec-RO Omega PHZ PNW PNZ PSR	58 40 40 58 66 59 62 63 63 63 64		
DWD EDS Estigia Etabloc Etabloc SYT Etachrom B Etachrom L Etaline Etaline SYT Etaline Z Etaline R	54 67 38 32 34 32 32 30 34 30 30 30	Movitec VCI Multi Eco Multi Eco-Pro Multi Eco-Top Multitec Multitec-RO Omega PHZ PNW PNZ PSR PumpDrive 2 / PumpDrive 2 Eco	58 40 40 58 66 59 62 63 63		
DWD EDS Estigia Etabloc Etabloc SYT Etachrom B Etachrom L Etaline Etaline SYT Etaline Z Etaline R Etaline-R Etaline-R Etanorm	54 67 38 32 34 32 32 30 34 30 30 31	Movitec VCI Multi Eco Multi Eco-Pro Multi Eco-Top Multitec Multitec-RO Omega PHZ PNW PNZ PSR	58 40 40 58 66 59 62 63 63 63 64		
DWD EDS Estigia Etabloc Etabloc SYT Etachrom B Etachrom L Etaline Etaline SYT Etaline Z Etaline-R Etanorm Etanorm	54 67 38 32 34 32 32 30 34 30 30 31 34	Movitec VCI Multi Eco Multi Eco-Pro Multi Eco-Top Multitec Multitec-RO Omega PHZ PNW PNZ PSR PumpDrive 2 / PumpDrive 2 Eco	58 40 40 58 66 59 62 63 63 64 26		
DWD EDS Estigia Etabloc Etabloc SYT Etachrom B Etachrom L Etaline Etaline SYT Etaline Z Etaline-R Etanorm Etanorm SYT / RSY Etanorm V Etaprime B	54 67 38 32 34 32 30 34 30 30 31 34 32 55	Movitec VCI Multi Eco Multi Eco-Pro Multi Eco-Top Multitec Multitec-RO Omega PHZ PNW PNZ PSR PumpDrive 2 / PumpDrive 2 Eco PumpDrive R	58 40 40 58 66 59 62 63 63 63 63 64 26 26		
DWD EDS Estigia Etabloc Etabloc SYT Etachrom B Etachrom L Etaline Etaline SYT Etaline Z Etaline-R Etanorm Etanorm SYT / RSY Etanorm V Etaprime B Etaprime L	54 67 38 32 34 32 30 34 30 30 31 34 32 55 55	Movitec VCI Multi Eco Multi Eco-Pro Multi Eco-Top Multitec Multitec-RO Omega PHZ PNW PNZ PSR PumpDrive 2 / PumpDrive 2 Eco PumpDrive R PumpDrive R PumpMeter	58 40 40 58 66 59 62 63 63 63 64 26 26 27		
DWD EDS Estigia Etabloc Etabloc SYT Etachrom B Etachrom L Etaline Etaline SYT Etaline Z Etaline-R Etanorm Etanorm SYT / RSY Etanorm V Etaprime B Etaprime L Etaseco / Etaseco-I	54 67 38 32 34 32 30 34 30 30 31 34 32 55 55 36	Movitec VCI Multi Eco Multi Eco-Pro Multi Eco-Top Multitec Multitec-RO Omega PHZ PNW PNZ PSR PumpDrive 2 / PumpDrive 2 Eco PumpDrive R PumpDrive R PumpMeter RC / RCV	58 40 40 58 66 59 62 63 63 63 64 26 26 27 66		
DWD EDS Estigia Etabloc Etabloc SYT Etachrom B Etachrom L Etaline Etaline SYT Etaline Z Etaline-R Etanorm Etanorm SYT / RSY Etanorm V Etaprime B Etaprime L Etaseco / Etaseco-I Etaseco RVP	54 67 38 32 34 32 30 34 30 31 34 32 55 55 36 36	Movitec VCI Multi Eco Multi Eco-Pro Multi Eco-Top Multitec Multitec-RO Omega PHZ PNW PNZ PSR PumpDrive 2 / PumpDrive 2 Eco PumpDrive R PumpDrive R PumpDrive R PumpMeter RC / RCV RDLO	58 40 40 58 66 59 62 63 63 63 64 26 26 27 66 59		
DWD EDS Estigia Etabloc Etabloc SYT Etachrom B Etachrom L Etaline Etaline SYT Etaline Z Etaline-R Etanorm Etanorm SYT / RSY Etanorm V Etaprime B Etaprime L Etaseco / Etaseco-I Etaseco RVP Evamatic-Box N	54 67 38 32 34 32 30 34 30 30 31 34 32 55 55 36 36 36 46	Movitec VCI Multi Eco Multi Eco-Pro Multi Eco-Top Multitec Multitec-RO Omega PHZ PNW PNZ PSR PumpDrive 2 / PumpDrive 2 Eco PumpDrive R PumpDrive R PumpMeter RC / RCV RDLO RDLP	58 40 40 58 66 59 62 63 63 64 26 26 27 66 59 59 59		
DWD EDS Estigia Etabloc Etabloc SYT Etachrom B Etachrom L Etaline Etaline SYT Etaline Z Etaline-R Etanorm Etanorm SYT / RSY Etanorm V Etaprime B Etaprime L Etaseco / Etaseco-I Etaseco RVP	54 67 38 32 34 32 30 34 30 31 34 32 55 55 36 36	Movitec VCI Multi Eco Multi Eco-Pro Multi Eco-Top Multitec Multitec-RO Omega PHZ PNW PNZ PSR PumpDrive 2 / PumpDrive 2 Eco PumpDrive R PumpDrive R PumpDrive R PumpMeter RC / RCV RDLO RDLP RER	58 40 40 58 66 59 62 63 63 64 26 26 27 66 59 59 59 64		
DWD EDS Estigia Etabloc Etabloc SYT Etachrom B Etachrom L Etaline SYT Etaline Z Etaline-R Etanorm SYT / RSY Etanorm V Etaprime B Etaprime L Etaseco / Etaseco-I Etaseco RVP Evamatic-Box N EZ B/L	54 67 38 32 34 32 30 34 30 30 31 34 32 55 55 36 36 46 55	Movitec VCI Multi Eco Multi Eco-Pro Multi Eco-Top Multitec Multitec-RO Omega PHZ PNW PNZ PSR PumpDrive 2 / PumpDrive 2 Eco PumpDrive R PumpDrive R PumpMeter RC / RCV RDLO RDLP RER RHD	58 40 40 58 66 59 62 63 63 64 26 26 27 66 59 59 59 64 64		
DWD EDS Estigia Etabloc Etabloc SYT Etachrom B Etachrom L Etaline Etaline SYT Etaline Z Etaline Z Etaline-R Etanorm Etanorm SYT / RSY Etanorm V Etaprime B Etaprime L Etaseco / Etaseco-I Etaseco RVP Evamatic-Box N EZ B/L FGD	54 67 38 32 34 32 30 34 30 30 31 34 32 55 55 36 36 36 46	Movitec VCI Multi Eco Multi Eco-Pro Multi Eco-Top Multitec Multitec-RO Omega PHZ PNW PNZ PSR PumpDrive 2 / PumpDrive 2 Eco PumpDrive R PumpDrive R PumpDrive R PumpMeter RC / RCV RDLO RDLP RER	58 40 40 58 66 59 62 63 63 64 26 27 66 59 59 64 64 65		
DWD EDS Estigia Etabloc Etabloc SYT Etachrom B Etachrom L Etaline SYT Etaline Z Etaline-R Etanorm SYT / RSY Etanorm V Etaprime B Etaprime L Etaseco / Etaseco-I Etaseco RVP Evamatic-Box N EZ B/L	54 67 38 32 34 32 30 34 30 30 31 34 32 55 55 36 36 46 55	Movitec VCI Multi Eco Multi Eco-Pro Multi Eco-Top Multitec Multitec-RO Omega PHZ PNW PNZ PSR PumpDrive 2 / PumpDrive 2 Eco PumpDrive R PumpDrive R PumpMeter RC / RCV RDLO RDLP RER RHD	58 40 40 58 66 59 62 63 63 64 26 26 27 66 59 59 59 64 64		
DWD EDS Estigia Etabloc Etabloc SYT Etachrom B Etachrom L Etaline Etaline SYT Etaline Z Etaline Z Etaline-R Etanorm Etanorm SYT / RSY Etanorm V Etaprime B Etaprime L Etaseco / Etaseco-I Etaseco RVP Evamatic-Box N EZ B/L FGD	54 67 38 32 32 30 34 30 30 31 34 32 55 55 36 36 46 55 53	Movitec VCI Multi Eco Multi Eco-Pro Multi Eco-Top Multitec Multitec-RO Omega PHZ PNW PNZ PSR PumpDrive 2 / PumpDrive 2 Eco PumpDrive R PumpMeter RC / RCV RDLO RDLP RER RHD RHM	58 40 40 58 66 59 62 63 63 63 64 26 26 27 66 59 59 64 64 65 65		
DWD EDS Estigia Etabloc Etabloc SYT Etachrom B Etachrom L Etaline Etaline Z Etaline Z Etaline-R Etanorm SYT / RSY Etanorm V Etanorm V Etaprime B Etaprime B Etaprime L Etaseco / Etaseco-I Etaseco RVP Evamatic-Box N EZ B/L FGD Filtra N	54 67 38 32 34 32 30 34 30 31 34 32 55 55 36 36 46 55 53 41	Movitec VCI Multi Eco Multi Eco-Pro Multi Eco-Top Multitec Multitec-RO Omega PHZ PNW PNZ PSR PumpDrive 2 / PumpDrive 2 Eco PumpDrive R PumpDrive R PumpMeter RC / RCV RDLO RDLP RER RHD RHM RHM RHR Rotex	58 40 40 58 66 59 62 63 63 64 26 26 26 27 66 59 59 64 64 65 65 45		
DWD EDS Estigia Etabloc Etabloc SYT Etachrom B Etachrom L Etaline Etaline SYT Etaline Z Etaline-R Etanorm Etanorm SYT / RSY Etanorm V Etaprime B Etaprime B Etaprime L Etaseco / Etaseco-I Etaseco RVP Evamatic-Box N EZ B/L FGD Filtra N HGB / HGC / HGD	54 67 38 32 34 32 30 34 30 30 31 34 32 55 55 36 36 46 55 53 41 61	Movitec VCI Multi Eco Multi Eco-Pro Multi Eco-Top Multitec Multitec-RO Omega PHZ PNW PNZ PSR PumpDrive 2 / PumpDrive 2 Eco PumpDrive R PumpDrive R PumpMeter RC / RCV RDLO RDLP RER RHD RHM RHR Rotex RPH	58 40 40 58 66 59 62 63 64 26 26 27 66 27 66 59 59 64 64 64 65 65 45 37		
DWD EDS Estigia Etabloc Etabloc SYT Etachrom B Etachrom L Etaline Etaline SYT Etaline Z Etaline-R Etanorm Etanorm V Etaprime B Etaprime L Etaseco / Etaseco-I Etaseco RVP Evamatic-Box N EZ B/L FGD Filtra N HGB / HGC / HGD HGI	54 67 38 32 34 32 30 34 30 30 31 31 34 32 55 55 36 36 46 55 53 41 61 61	Movitec VCI Multi Eco Multi Eco-Pro Multi Eco-Top Multitec Multitec-RO Omega PHZ PNW PNZ PSR PumpDrive 2 / PumpDrive 2 Eco PumpDrive R PumpDrive R PumpMeter RC / RCV RDLO RDLP RER RHD RHM RHR ROTEX RHD RHM RHR ROTEX RPH RPHd / RPHbd	58 40 40 58 66 59 62 63 63 64 26 26 27 66 59 59 64 64 65 65 45 37 37		
DWD EDS Estigia Etabloc Etabloc SYT Etachrom B Etachrom L Etaline Etaline SYT Etaline Z Etaline-R Etanorm SYT / RSY Etanorm V Etaprime B Etaprime B Etaprime L Etaseco / Etaseco-I Etaseco RVP Evamatic-Box N EZ B/L FGD Filtra N HGB / HGC / HGD HGI HGM	54 67 38 32 32 30 34 30 30 31 34 32 55 55 36 36 46 55 55 36 36 46 55 53 41 61 61	Movitec VCI Multi Eco Multi Eco-Pro Multi Eco-Top Multitec Multitec-RO Omega PHZ PNW PNZ PSR PumpDrive 2 / PumpDrive 2 Eco PumpDrive R PumpDrive R PumpMeter RC / RCV RDLO RDLP RER RHD RHM RHR RHM RHM RHR ROTEX RPH RPH / RPHd / RPHbd RPH-LF	58 40 40 58 66 59 62 63 63 64 26 26 27 66 59 59 64 64 65 65 45 37 37 37		
DWD EDS Estigia Etabloc Etabloc SYT Etachrom B Etachrom L Etaline Etaline SYT Etaline Z Etaline-R Etanorm SYT / RSY Etanorm V Etanorm V Etanorm V Etaprime B Etaprime L Etaseco / Etaseco-I Etaseco RVP Evamatic-Box N EZ B/L FGD Filtra N HGB / HGC / HGD HGI HGM HPH	54 67 38 32 32 30 34 30 30 31 34 32 55 55 36 36 46 55 55 36 36 46 55 53 41 61 61 61 33	Movitec VCI Multi Eco Multi Eco-Pro Multi Eco-Top Multitec Multitec-RO Omega PHZ PNW PNZ PSR PumpDrive 2 / PumpDrive 2 Eco PumpDrive R PumpMeter RC / RCV RDLO RDLP RER RHD RDLP RER RHD RHM RHR RHM RHR ROTEX RPH / RPHd / RPHbd RPH-LF RPH-RO	58 40 40 58 66 59 62 63 63 64 26 26 27 66 59 59 64 64 65 65 45 37 37 37 37 66		
DWD EDS Estigia Etabloc Etabloc SYT Etachrom B Etachrom L Etaline Etaline SYT Etaline Z Etaline-R Etanorm SYT / RSY Etanorm V Etaprime B Etaprime B Etaprime L Etaseco / Etaseco-I Etaseco RVP Evamatic-Box N EZ B/L FGD Filtra N HGB / HGC / HGD HGI HGM	54 67 38 32 32 30 34 30 30 31 34 32 55 55 36 36 46 55 55 36 36 46 55 53 41 61 61	Movitec VCI Multi Eco Multi Eco-Pro Multi Eco-Top Multitec Multitec-RO Omega PHZ PNW PNZ PSR PumpDrive 2 / PumpDrive 2 Eco PumpDrive R PumpDrive R PumpMeter RC / RCV RDLO RDLP RER RHD RHM RHR RHM RHM RHR ROTEX RPH RPH / RPHd / RPHbd RPH-LF	58 40 40 58 66 59 62 63 63 64 26 26 27 66 59 59 64 64 65 65 45 37 37 37		
DWD EDS Estigia Etabloc Etabloc SYT Etachrom B Etachrom L Etaline Etaline SYT Etaline Z Etaline-R Etanorm SYT / RSY Etanorm V Etanorm V Etanorm V Etaprime B Etaprime L Etaseco / Etaseco-I Etaseco RVP Evamatic-Box N EZ B/L FGD Filtra N HGB / HGC / HGD HGI HGM HPH	54 67 38 32 32 30 34 30 30 31 34 32 55 55 36 36 46 55 55 36 36 46 55 53 41 61 61 61 33	Movitec VCI Multi Eco Multi Eco-Pro Multi Eco-Top Multitec Multitec-RO Omega PHZ PNW PNZ PSR PumpDrive 2 / PumpDrive 2 Eco PumpDrive R PumpMeter RC / RCV RDLO RDLP RER RHD RDLP RER RHD RHM RHR RHM RHR ROTEX RPH / RPHd / RPHbd RPH-LF RPH-RO	58 40 40 58 66 59 62 63 63 64 26 26 27 66 59 59 64 64 65 65 45 37 37 37 37 66		
DWD EDS Estigia Etabloc Etabloc SYT Etachrom B Etachrom L Etaline Etaline SYT Etaline Z Etaline-R Etanorm SYT / RSY Etanorm V Etanorm V Etaprime B Etaprime B Etaprime B Etaprime L Etaseco / Etaseco-I Etaseco RVP Evamatic-Box N EZ B/L FGD Filtra N HGB / HGC / HGD HGI HGM HPH HPK	54 67 38 32 34 32 30 34 30 30 31 34 32 55 55 36 36 46 55 55 36 36 46 55 53 41 61 61 61 33 33	Movitec VCI Multi Eco Multi Eco-Pro Multi Eco-Top Multitec Multitec-RO Omega PHZ PNW PNZ PSR PumpDrive 2 / PumpDrive 2 Eco PumpDrive R PumpMeter RC / RCV RDLO RDLP RER RHD RHM RHR ROLP RER RHD RHM RHM RHR Rotex RPH RPH-LF RPH-RO RPH-V	58 40 40 58 66 59 62 63 63 64 26 26 27 66 59 59 64 65 65 45 37 37 37 66 37		
DWD EDS Estigia Etabloc Etabloc SYT Etachrom B Etachrom L Etaline Etaline SYT Etaline Z Etaline-R Etanorm Etanorm V Etanorm V Etaprime B Etaprime B Etaprime L Etaseco / Etaseco-I Etaseco RVP Evamatic-Box N EZ B/L FGD Filtra N HGB / HGC / HGD HGI HGM HPH HPK HPK-L HVF	54 67 38 32 34 32 30 34 30 30 31 34 32 55 55 36 36 46 55 53 41 61 61 61 33 33 33 54	Movitec VCI Multi Eco Multi Eco-Pro Multi Eco-Top Multitec Multitec-RO Omega PHZ PNW PNZ PSR PumpDrive 2 / PumpDrive 2 Eco PumpDrive R PumpDrive R PumpMeter RC / RCV RDLO RDLP RER RHD RHN RHR RHB RHD RHM RHR ROTEX RHM RHP RHP RPH / RPHd / RPHbd RPH-LF RPH-RO RPH-V RSR RUV	58 40 40 58 66 59 62 63 63 64 26 26 27 66 27 66 59 59 64 64 65 65 45 37 37 37 37 66 37 64 64 64 64		
DWD EDS Estigia Etabloc Etabloc SYT Etachrom B Etachrom L Etaline Etaline SYT Etaline Z Etaline-R Etanorm SYT / RSY Etanorm V Etaprime B Etaprime B Etaprime L Etaseco / Etaseco-I Etaseco / Etaseco-I Etaseco RVP Evamatic-Box N EZ B/L FGD Filtra N HGB / HGC / HGD HGI HGM HPH HPK HPK	54 67 38 32 34 32 30 34 30 31 34 32 55 55 36 36 46 55 53 41 61 61 61 33 33 33 33	Movitec VCI Multi Eco Multi Eco-Pro Multi Eco-Top Multitec Multitec-RO Omega PHZ PNW PNZ PSR PumpDrive 2 / PumpDrive 2 Eco PumpDrive R PUMPDrive R PumpMeter RC / RCV RDLO RDLP RER RHD RHM RHR ROTEX RHD RHM RHM RHH ROTEX RPH-F RPH-V RSR	58 40 40 58 66 59 62 63 63 64 26 26 27 66 59 59 64 64 65 65 45 37 37 37 37 66 37 64		

Our goal: Quality down to the smallest detail

At KSB, customer satisfaction, safety and reliability take top priority when it comes to quality assurance. Besides ensuring compliance with international quality standards, all KSB pumps and valves have to fulfil even higher internal quality standards.

Our integrated quality management system includes a detailed evaluation process for our production sites and suppliers worldwide. As a KSB customer, you can therefore rest assured that no matter where or when you order, you will always experience consistently high quality. Thanks to our continuous improvement process, we produce pumps and valves with a long service life, excellent efficiency and low wear – as guaranteed by our internal certification system and the "Made by KSB" quality seal.

How KSB puts quality into daily practice

- Quality is when our customers are satisfied: We focus all of our efforts on our customers. Our global customer satisfaction analysis shows us how well we're doing.
- Quality is what every employee delivers: Everyone at KSB plays a part in creating a positive customer experience. To ensure the best results, all employees undergo continuous professional development.
- Quality is how processes interlock: We continuously check and improve work processes and the working environment.
- Quality is what our supply chain contributes: We set our quality targets in cooperation with our partners. This helps us raise quality across the entire supply chain to the highest level.
- Quality is how mistakes are dealt with: If we detect quality deviations, we determine the causes in order to eliminate them permanently.

As a signatory to the United Nations Global Compact, KSB is committed to the ten principles of the international community in the areas of human rights, labour standards, environmental protection and anti-corruption.

4

Creating the extraordinary. With passion.

We love what we do and that's why we go the extra mile to create truly extraordinary products for our customers. Our passion has been the secret to our success for 150 years and the reason why our pumps, valves and services continue to set new standards around the world.

KSB's superior products have the crucial edge in applications ranging from building services and industry to chemicals and petrochemicals, water supply and waste water treatment through to power stations and mining. Our innovative products and carefully devised solutions fulfil the highest requirements in terms of efficiency, availability and operating reliability. And that's just the start! Through our in-house research and development, unique engineering expertise and smart digital services, we are constantly expanding the boundaries of what is possible for our customers.

Our range of services is rounded off by a comprehensive service and spare parts portfolio that guarantees the highest quality, even when dealing with non-KSB products. Across KSB, our qualified and committed employees are passionately dedicated to keeping everything running smoothly for our customers.

KSB: Keeping everything flowing for 150 years.

General Information

Regional products	Not all depicted products are available for sale in every country. Products only available in individual regions are indicated accordingly. Please contact your sales representative for details.
Trademark rights	All trademarks or company logos shown in the catalogue are protected by trademark rights owned by KSB SE & Co. KGaA and/or a KSB Group company. The absence of the "®" symbol should not be interpreted to mean that the term is not a registered trademark.
Product illustrations	The products illustrated as examples may include options and accessories incurring a surcharge. Subject to modifications due to technical enhancements.
Product information	For information as per chemicals Regulation (EC) No. 1907/2006 (REACH), see https://www.ksb.com/en-global/company/corporate-responsibility/reach.
Digital product catalogue	https://www.ksb.com/en-gb/global-search
CAD portal	http://ksb.partcommunity.com
BIM	https://www.ksb.com/en-gb/software-and-know-how/configuration-tools

6

Pumps

Design / Application	Type series	Page	Factory-automated	Automation available	Water Transport and Water Treatment	Industry	Energy Conversion	Building Services	Solids Transport
	Calio-Therm S NC/NCV	28							
Drinking water circulators, fixed speed	Calio-Therm NC	28						-	
	Calio-Therm	28							
Drinking water circulators, variable speed	Calio-Therm S	28							
	Calio S	29							
	Calio	29							
Circulators, variable speed	Calio Z	29							
circulators, variable speed	Calio Pro	29	-						
	Calio Pro Z	29	-						
	Etaline	30							
	Etaline Z	30		1.1					
	Etaline-R	30		1.1		_		1	
In-line pumps	ILN	30		i i i				-	
	ILNC	31		10.0					
	ILNR	31		1.1					
	Megaline	31		1.1					
	Etanorm	31							
	Etabloc	32		1.1				-	
	Etachrom B	32		1.1					
Standardised / close-coupled pumps	Etachrom L	32		1.1			-	-	
	Etanorm V	32				_		-	
	Meganorm	33		1.1	-	-	-		
	Megabloc	33		1.1	_	_		1	
	HPK-L	33		1.1		-	-	1	
Hot water pumps	НРН	33		1.1		-	-	1	
	НРК	33		100		-	-		
	Etanorm SYT / RSY	34		1.1					
Hot water / thermal oil pumps	Etabloc SYT	34		1.1					
	Etaline SYT	34		1.1		_		-	
	MegaCPK	34		1.1				_	
Standardised chemical pumps	CPKN	35					-		
	СРКНО	35							
	Magnochem	36							
	Magnochem 685	36							
Seal-less pumps	Magnochem-Bloc	36							
	Etaseco / Etaseco-I	36							
	Etaseco RVP	36							
	RPH	37							
	RPH-LF	37							
	RPHb / RPHd / RPHbd	37							
	RPH-V	37							
	CTN	37							
	CHTR	38							
Process pumps	CHTRa	38							
	CINCP / CINCN	38							
	INVCP	38							
	Estigia	38							
	RWCP / RWCN	39							
	WKTR	39							
	Hya-Rain / Hya-Rain N	40							
Rainwater harvesting systems		40							

Design / Application	Type series	Page	Factory-automated	Automation available	Water Transport and Water Treatment	Industry	Energy Conversion	Building Services	Solids Transport
	Multi Eco	40							
	Multi Eco-Pro	40			-				
Domestic water supply systems with automatic	Multi Eco-Top	40			-				
control unit / swimming pool pumps	Ixo N	41			-				
	Ixo-Pro	41			-				
	Filtra N	41							
	KSB Delta Macro	41							
	KSB Delta Solo/Basic Compact	41							
	KSB Delta Basic	41			-				
	KSB Delta Primo	42			-	-			
	KSB Delta Solo	42			-				
	Hya-Solo D	42							
Pressure booster systems	Hya-Solo D Hya-Solo D FL	42	-		-	-			
Pressure booster systems	-								
	Hya-Duo D FL	43							
	Hya-Solo D FL Compact	43					-		
	Hya-Duo D FL Compact	43							
	Hya-Duo D FL-R	43							
	Surpress Feu SFE	43							
	Safety Boost	44							
	AmaDrainer 3	44		_					
	AmaDrainer 4 / 5	44		-				-	
Drainage pumps / waste water pumps	AmaDrainer 80/100	44		_				-	
	Ama-Porter F / S	44		_					
	Rotex	45						-	
	MK / MKY	45		-				-	
	Amaclean	45							
	AmaDrainer-Box Mini	45							
	AmaDrainer-Box	45							
	Evamatic-Box N	46							
	mini-Compacta	46							
Lifting units / package pump stations	Compacta	46							
	CK 800 Pump Station	46							
	CK 1000 Pump Station	46							
	Ama-Porter CK Pump Station	47							
	SRL	47							
	SRA	47							
	Amarex	48							
Submersible motor pumps	Amarex N	48							
	Amarex KRT	48		•					
	Amacan K	48							
Submersible pumps in discharge tubes	Amacan P	48							
-	Amacan S	49		•					
	Amamix	50							
Mixers / agitators / tank cleaning units	Amaprop	50							
	Amaline	50							
	Sewatec	51							
	Sewatec SPN	51		_	-				
Pumps for solids-laden fluids	Sewabloc	51							
. ango for some factrificities	KWP	51							
		51			-				

Design / Application	Type series	Page	Factory-automated	Automation available	Water Transport and Water Treatment	Industry	Energy Conversion	Building Services	Solids Transport
	WBC	52							
	LSA	52							
	LCC-M	52							
	LCC-R	52							
	ТВС	52							
	LCV	53							
	FGD	53							
Slurry pumps	MHD	53							
	LHD	53							
	MDX	53							
	ZW	54							
	HVF	54							
	DWD	54							
	TDW	54							
	Etaprime L	55							
	Etaprime B	55							
Self-priming pumps	EZ B/L	55							
	AU	55							
	AU Monobloc	55							
	UPA C 100 EE	56							
	UPA C 100 EN	56							
	UPA C 150	56							
	UPA 200, UPA 250	56							
Submersible borehole pumps	UPA 300, UPA 350	56							
	UPA 400 - UPA 1100	57							
	UPA D	57							
	UPA S 200	57							
Vertical turbine pumps	B Pump	57							
	Comeo	58							
	Movitec H(S)I	58							
High-pressure pumps	Movitec	58							
2 Francisco Fran	Movitec VCI	58							
	Multitec	58							
	Omega	59							
Axially split pumps	RDLO	59							
	RDLP	59							
	Vitachrom	59							
	Vitacast	60							
Hygienic pumps for the food, beverage and	Vitacast Bloc	60		-	-				
pharmaceutical industries	Vitaprime	60							
	Vitastage	60							
	Vitalobe	60							

Design / Application	Type series	Page	Factory-automated	Automation available	Water Transport and Water Treatment	Industry	Energy Conversion	Building Services	Solids Transport
	CHTA / CHTC / CHTD	61							
	HGB / HGC / HGD	61							
	HGI	61							
	HGM	61							
	YNK	61							
	LUV / LUVA	62							
	WKTB	62							
Pumps for power station conventional islands	SEZ	62							
	SEZT	62							
	PHZ	62							
	PNZ	63							
	SNW	63							
	PNW	63							
	Beveron	63							
	SPY	63							
	RER	64							
	RSR	64							
	RUV	64							
	PSR	64							
	RHD	64							
Pumps for nuclear power stations	LUV Nuclear	65							
	RHM	65							
	RVM	65							
	RHR	65							
	RVR	65							
	RVT	66							
	RPH-RO	66							
Pumps for desalination by reverse osmosis	Multitec-RO	66							
Positive displacement pumps	RC / RCV	66							
	EDS	67							
Fire-fighting systems	DU / EU	67							

Design / Application	Type series	Page	Water Transport and Water Treatment	Industry	Energy Conversion	Building Services	Solids Transport
Automation and drives	KSB SuPremE	26					
Automation and drives	KSB UMA-S	26					
	Controlmatic E	68					
	Controlmatic E.2	68					
Control units	Cervomatic EDP.2	68					
Control units	LevelControl Basic 2	68					
	UPA Control	68					
	Hyatronic N	69					
	PumpDrive 2 / PumpDrive 2 Eco	26					
Variable speed systems	PumpDrive R	26					
	PumpMeter	27					
Manitaving and diagnasis	KSB Guard	27					
Monitoring and diagnosis	KSB Leakage Sensor	27					
	Amacontrol	69					

		NC/NCV																														
	i	Calio-Therm 5 NC/NCV Calio-Therm NC		Calio-Therm	Calio-Therm S		Calio S	Calio	Calio Z	Calio Pro Z		Etaline	Etaline Z	Etaline-R	ILN		Megaline		Etanorm	Etabloc	Etachrom B	Etachrom L	Etanorm V	Meganorm	Megabloc							
Waste water with faeces				-		_						ш	<u> </u>		=	= =	: <						ш 	2	2							_
Waste water with laces	fixed speed	+	beed		$\left - \right $	Circulators, variable speed	\vdash	-	+	+-	In-line pumps	-				+	+-	d m			+			_		$\left \right $	\rightarrow	\rightarrow	+	+	+	+
Aggressive liquids	d sp	+	e sp		\square	e sp	\vdash		+	-	- nd	-				+	+-	l pu			+			-				\rightarrow	+	+	+	+
Inorganic liquids	fixe		iabl			iabl					-li						1	plec											+	-	+	+
Activated sludge	ors,		var			var					È							cou														
Brackish water	ulato		tors,			tors,												ose-														
Service water	circu		ulat			ulat												<u>, c</u>										\square	\perp	\perp		\perp
Distillate	ter		circ			Circ					_							sed						_				\rightarrow	\rightarrow	_	_	_
Slurries	Wa	+	iter	-	\square		\vdash	_	_	_	-	-					_	Standardised / close-coupled pumps	-	\vdash	+			_		$\mid \mid$	$ \rightarrow$	\dashv	+	+	+	+
Explosive liquids Digested sludge	ing	+	N I	\vdash	$\left - \right $		\vdash	+	-	_	-	-	$\left - \right $		\square	+	_	and	-	\vdash	+			_		$\left - \right $	$ \rightarrow$	+	+	+	+	+
Solids (ore, sand, gravel, ash)	Drinking water circulators,	+	Drinking water circulators, variable speed	\vdash	\vdash		\vdash	+	+	+-	-	-	\vdash	\square		+	+	St	-	\vdash	+			_		$\mid \mid$	\dashv	+	+	+	+	+
Flammable liquids		+	Drin	\vdash	$\mid \mid$		\vdash	+	+	+			$\left \right $			+	+		-	\vdash	+					\vdash	\dashv	+	+	+	+	+
River, lake and groundwater		+								+																			+	-	+	+
Liquefied gas																													\neg			+
Food and beverages																																
Gas-containing liquids																																
Gas turbine fuels																													\perp	\perp	\perp	\perp
Filtered water		_								_							_							_			$ \rightarrow $	\rightarrow	\rightarrow	\perp	\downarrow	\perp
Geothermal water		_	-							_	-										_			_			$ \rightarrow$	\rightarrow	\rightarrow	\rightarrow	_	+
Harmful liquids	┥┝	+	-				\vdash	_	_	+-	-	-				+	_		_		+	_		_		$\left - \right $	\rightarrow	\rightarrow	+	+	+	+
Toxic liquids High-temperature hot water		+	-		\square		\vdash	-			-															\vdash	$ \rightarrow$	\rightarrow	+	+	+	+
Heating water																	_	-		\rightarrow	-	-						\rightarrow	+	-	+	+
Highly aggressive liquids		+-						-				F	-	-	-				⊢		+			-	_				+	-	+	+
Industrial service water																													+			
Condensate] [1														
Corrosive liquids																																
Valuable liquids																											\square	\square	\perp	\perp		\perp
Fuels		_					\square	_		_		_				_	_				\rightarrow			_			$ \rightarrow$	\rightarrow	\rightarrow	\rightarrow	+	\perp
Coolants	┥┝	_	-						_	_	-	_					_		_		_			_		-	$ \rightarrow$	\rightarrow	\rightarrow	+	_	+
Cooling lubricant Cooling water	┥┝		_								-															$\left - \right $	$ \rightarrow$	\rightarrow	-	+	_	+
Volatile liquids	┥┝							-				P							-		┛	-		-	-	\vdash	\rightarrow	\rightarrow	+	+	+	+
Fire-fighting water	┥┝	+	-				\vdash	-		+-	-	-									+					\vdash		\rightarrow	+	+	+	+
Solvents		+			$\left - \right $		\vdash	+	+	+										╞═┥	+			-	_	┝─┤	\neg	+	+	+	+	+
Seawater		\top			\square			1	\neg								•				\uparrow							\neg	+	-	╈	+
Oils																																
Organic liquids																																
Pharmaceutical fluids					\square		\square								\square					\square						Ш	шſ	\square	\perp	\perp	\downarrow	\perp
Polymerising liquids		_			\square			_	_	_	-	<u> </u>	\square			_	_	-	L	\square	_			_		\square	$ \rightarrow$	\rightarrow	\downarrow	\perp	\downarrow	\perp
Rainwater / stormwater		_		\vdash	$\mid \mid$			\rightarrow	_	_		_	$\left - \right $					-			_	_			-	$\mid \mid$	$ \rightarrow$	\rightarrow	+	+	+	+
Cleaning agents Raw sludge		+	-		$\left - \right $		\vdash	+	-		-	-	$\left - \right $						-		-					\vdash	$ \rightarrow$	+	+	+	+	+
Lubricants		+		\vdash	$\left - \right $		\vdash	+	+		-	-	\vdash		\vdash	+	+-		-	\vdash	+	\neg		-		\vdash	\rightarrow	+	+	+	+	+
Grey water		+		\vdash	\vdash		\vdash	+	-	+		-	\vdash	\square		+	+		-	\vdash	+					\vdash		+	+	+	+	+
Swimming pool water		+			\vdash		\vdash	+	+	+																\vdash	\neg	+	+	+	+	+
Brine		\top			\square			1													\uparrow							\uparrow	+	-	╈	+
Feed water																																
Dipping paints																		-						_								
Drinking water							\square																			\square	$ \rightarrow $	\square	\downarrow	\perp	\downarrow	\perp
Thermal oil		+						_	_		-	-				_			-	\vdash	_	_		_	-	\vdash	\rightarrow	\rightarrow	+	+	+	+
Hot water		-		•							4	P												-	-	\vdash	$ \rightarrow$	\rightarrow	+	+	+	+
Wash water																																

																			_										z		
																			RPHb / RPHd / RPHbd										Hya-Rain / Hya-Rain N		
					Etanorm SYT / RSY									v	Etaseco / Etaseco-l				F										Rai		
					1								89	쯢	Sec				Υ.				~			~			-e		
					노	⊢	_					ε	ε	έ	ta	۹.			우				ÿ			Q			£	8	
					Ś	Σ	Σ		¥			he	he	he	Ξ.	2			Ę				Ð			ş			ì	Ē	
		_			E E	Etabloc SYT	Etaline SYT		MegaCPK	_	<u>o</u>	Magnochem	Magnochem 685	Magnochem-Bloc	S	Etaseco RVP		5	5	>			CINCP / CINCN	•	a	RWCP / RWCN	~		Rai	Hya-Rain Eco	
		НРК-L	НЧН	:	ŭ	lde	alir		ŝ	CPKN	Σ	adr	, jë	g	ase	ase	I	RPH-LF	무	RPH-V			Ξÿ	INVCP	tigi	2	WKTR		a-l	a-l	
		₽	H H		Ē	Εť	Eť		ž	9	CPKNO	Ĕ	ŝ	ŝ	Et	E	Hda	: 2	R	RP	E	53	55	ź	Estigia	Š	₹		Ŧ	Ŧ	
Waste water with faeces	S			5	,			s			_	s					S											s			
Waste water with faces	Hot water pumps			samna	2	-		du			-	Seal-less pumps		-	$\left \right $	-	Process pumps					+			-		-	- E			
	- JD					_		our	_	_	_		_			_		_	-			+			-		<u> </u>	/st		_	\rightarrow
Aggressive liquids	er							all				ss p					s					_						g s			
Inorganic liquids	/at				5			nic									8	•				• •						ti			
Activated sludge	×			Ĩ		1		Jer				ea				6	F –								1			/est			
Brackish water	운			he		1		· · ·				~ <u> </u>	-	-								+				\vdash	-	arv			
Service water	1			+	:	-		ised		-	ī					_						+					-	<u>ب</u>			
	┥	_	_	ter	3	-		rd					_									+	_			╞═┙	-	ate			+
Distillate				Hot water / thermal oil	-	-		Standardised chemical pumps			-					<u> </u>		-	_	\square		_		_		\vdash	<u> </u>	Rainwater harvesting systems	\square	$ \downarrow$	
Slurries				to	5			tar																				air			
Explosive liquids		Π		Í				S							1													1		T	
Digested sludge						1							1						1					1	1	\square					
Solids (ore, sand, gravel, ash)						1	\vdash		\rightarrow				-	-	\vdash	-		+	-	\vdash	\neg	+	-	+	1		-		\vdash	\rightarrow	+
				-	-	-	$\left - \right $		-	-	_	-	-	-	$\left \cdot \right $	_		-	-	╞		+	-	-	-		-		\vdash	-+	+
Flammable liquids				-	-						•				\vdash	_												-	\vdash	\rightarrow	+
River, lake and groundwater															\square												L				
Liquefied gas																															
Food and beverages	[\square		
Gas-containing liquids	1 1					1							1						1							\square		1			
Gas turbine fuels	1 1					1			-	-			+	-					-			-		+	+-		-				+
				-		-					_			-	$\left \right $	_		_			_	_	_	-	+	\vdash	-	-			+
Filtered water				_							_		_			_		_					_		_		L	-		_	\rightarrow
Geothermal water																															
Harmful liquids																		•				• •									
Toxic liquids	[] ,	\square		
High-temperature hot water	1 1																											1			
Heating water	1 1	_				+-			-	-			-	+-					-				-	+	+	\vdash	-				+
	1			-		-			-	_	_				┝═┼	-				-	_	+	-	-	-	\vdash	-				+
Highly aggressive liquids	$\left\{ \right\}$		_	-		-					•											+		_	-		<u> </u>			_	\rightarrow
Industrial service water																															
Condensate																						• •									
Corrosive liquids	1 [1																						1			
Valuable liquids	11					1																+						1			-
Fuels						-			-	-			_			-		_						-		+				-	
				-	-				-	-	-		_			_			-					-	_	\vdash	-	-			+
Coolants	$\left\{ \right\}$			_		_				_	_					<u> </u>						+		_		\vdash	<u> </u>	- 1		_	\rightarrow
Cooling lubricant																															
Cooling water																		•													
Volatile liquids	1					1																						1			
Fire-fighting water	1 1					1							-	1				-	1			+			1						+
Solvents	1					-																									
				-	-	-	\vdash		-		_				╞═┼	-		╵┤╺┛							-		┝┻		\vdash	-+	+
Seawater				-	1	-	\square				•			-	\square	_		-	-								_		\vdash		
Oils																		_													
Organic liquids																														T	
Pharmaceutical fluids						1			-						$ \uparrow $			1								\square					
Polymerising liquids						1									\vdash			+	-	\vdash		+	+	+		\vdash	<u> </u>		\vdash	\rightarrow	+
Rainwater / stormwater				-		\vdash	\vdash		-	-	-			-	\vdash	_		+	-	\vdash		+		+		\vdash	-				+
	$\left\{ \right\}$			-		_			_	_	_		_	_		_			-		-	+	_	_	_		<u> </u>	- 1		-	\rightarrow
Cleaning agents																															
Raw sludge																															
Lubricants																					T	T									
Grey water			1			1			1						\square			1		T									\square	\neg	1
Swimming pool water						-			\dashv	-			-	-	\vdash			+	-	\vdash	-	+	+	+	\vdash	<u> </u>	<u> </u>		\vdash	\dashv	+
			_	-	-	-	\vdash		-		_		-	-	╞╤┤	_	_	+-	-	\vdash	-+	+	+-	+-	-	\vdash	-		\vdash	\rightarrow	+
Brine			_			-					-					-		-	-			_	_			\vdash			\vdash	\rightarrow	+
Feed water						_							_		\square			_	_	\square				_	1		<u> </u>		\square		
Dipping paints																															
Drinking water																					T								IT	T	
Thermal oil																															
Hot water																		+	1					+						\neg	1
Wash water						-	-		-	-	-			-	╞═┥	-		+-	-	\vdash							-		\vdash	\rightarrow	+
vvasn water						1																	15								

		Multi Eco	Multi Eco-Pro	Multi Eco-Top Ixo N	lxo Pro	Filtra N		KSB Delta Macro	KSB Delta Solo/Basic Compact	KSB Delta Basic	KSB Delta Primo	KSB Delta Solo	Hya-Solo D	Hya-Solo D FL	Hya-Duo D FL	Hya-Solo D FL Compact	Hya-Duo D FL Compact	Hya-Duo D FL-R	Surpress Feu SFE	Safety Boost													
Waste water with faeces	bs						ns																										_
Waste water without faeces	Domestic water supply systems with automatic control unit / swimming pool pumps						Pressure booster systems												_							\square					Щ	\square	
Aggressive liquids	0				-		er s)						_																		\square	\rightarrow	
Inorganic liquids	d bo	_	_		_	-	oste		-				_						-			_	-	-				_	_	_	\vdash	\rightarrow	
Activated sludge Brackish water	ning	\rightarrow	+	_	-	-	od s	_	-				_	_		—		_	_	-	_	-	-	-				_	_	-	\vdash	\rightarrow	
Service water	vimr					\vdash	sure		-				_	_				\neg	\rightarrow			+	+	\vdash	-				-	+	\vdash	+	—
Distillate	/ sv	-	-		-	1	Pres		-				_	-					\rightarrow	-		+-	+	1	-				+		\vdash	\rightarrow	
Slurries	nit		+		1	\vdash	1		1				-									+	┢	\vdash						+	\vdash	\neg	
Explosive liquids	rol																															_†	_
Digested sludge	ont																														\square		
Solids (ore, sand, gravel, ash)	tic c																									\square	\square	_		_	\square	\downarrow	
Flammable liquids	ama	\rightarrow	+	_	-	-		-	-		\mid		_					_	\rightarrow	-		_	+	-	_			+	_	-	\vdash	\dashv	
River, lake and groundwater Liquefied gas	auto	\rightarrow	+	_	-	-		-	-		$\left - \right $		_					-	\rightarrow	-	_	-	-	-	-	$\left - \right $		+	_		\vdash	\dashv	
Food and beverages	ith	-	+		-	-			-				_	_						+		-	-	-				_	-	-	\vdash	+	—
Gas-containing liquids	IS W	\rightarrow	+	_	+	1			-				_	-	_	-						+-	+	+	-				+		\vdash	\rightarrow	—
Gas turbine fuels	tem				1	\vdash																1	1	╞						1	\vdash	\neg	
Filtered water	r sys				1		1															1	1								\square		_
Geothermal water	ldd																																
Harmful liquids	r su																														Ц	\square	
Toxic liquids	/ate			_									_			_		_	_			_								_	\square	\rightarrow	
High-temperature hot water	ic ×	-	_		-	-			-				_									_	_	-				_	_	_	\square	\rightarrow	
Heating water Highly aggressive liquids	nest	+	+	_	+	-		-	-				_	_			-	_	\rightarrow	+	_	+-	+	-	-			_	+		\vdash	\rightarrow	
Industrial service water	Dor	\rightarrow	+	_	+	-								_		—			-			+-	-	-	-					-	\vdash	\rightarrow	—
Condensate		\rightarrow	+	+	+	\vdash		⊢	-	-	-	-	-							-		-	+	\vdash						+	\vdash	+	
Corrosive liquids																																1	_
Valuable liquids							1																										
Fuels																															\square		
Coolants													_																		Ц	$ \downarrow$	
Cooling lubricant				_	_				_				_									_	_					_	_	_	\square	\rightarrow	
Cooling water		\rightarrow	+	_		-		-	-				_	_		_		_	\rightarrow	\rightarrow	_	-	+	-	_			_	_	-	\vdash	\rightarrow	
Volatile liquids Fire-fighting water		\rightarrow	+	_	+	\vdash		-	-		$\left - \right $	_	_							-	_	-	+	\vdash	-			+		+	\vdash	+	
Solvents		+	+		-	\vdash		-	-		\vdash		_					-	-	\dashv		+	+	\vdash		\vdash	\square	+	-	+	\vdash	+	
Seawater		\dashv	+	+	-	-					\square		-						\neg	\dashv		+	\vdash	-	-		\vdash	+	+	1	\vdash	+	
Oils						Ĺ			Ĺ															Ĺ									_
Organic liquids																																	
Pharmaceutical fluids		1																	Ţ							Ц	\square				Щ	\square	
Polymerising liquids		$ \rightarrow$	_		-	_		L	<u> </u>		\square		_						_	_		_	-	_		\square				_	\square	$ \rightarrow$	
Rainwater / stormwater		\rightarrow	+	_	-	-		-					-						-			_	-	-		$\mid \mid$	\square		_	-	\vdash	\dashv	
Cleaning agents Raw sludge		+	+	_	-	\vdash		-	-		\square	_	_		_			-	+	+		-	+	\vdash	-	\vdash		-+	+		\vdash	+	
Lubricants		+	+	+	+	\vdash			-	\square	\vdash		_	_		\square		\neg	+	\neg		+	+	\vdash	-	\vdash		-	+	+	\vdash	\rightarrow	—
Grey water		+	+	+	+	-					\vdash					\square		\neg	+	+	-	+	+	+	-		\vdash	+	+	+	\vdash	+	—
Swimming pool water		\uparrow	+	+	1														\uparrow	\neg		1	\uparrow	1						1	\square	+	_
Brine																																	_
Feed water																															\square		
Dipping paints					_														_							\square					\square	$ \downarrow$	
Drinking water					-	_						-	-						_	-		_	-	_	_	\square		_	_		\vdash	\rightarrow	
Thermal oilHot water		+	+	_	-	-		-	-		\vdash		_					-	+		_	-	-	-	-	$\left - \right $				-	\vdash	\rightarrow	
Hot water Wash water		+	+	_	-	\vdash		-	-		\vdash	_	_	Η	_	-			\dashv	-	-	+	+	\vdash	-	\vdash	\vdash		+	+	\vdash	+	—
vvasti Water						1																		1							i		

	AmaDrainer 3	AmaDrainer 4 / 5	AmaDrainer 80/100	Ama-Porter F / S	Rotex	MK / MKY					mini-Compacta	Compacta	_	CK 1000 Pump Station	Ama-Porter CK Pump Station		SRA	_		Amarex N										
Waste water with faeces	sdr						s 🛯	_										sd		_		_				_		\vdash	_	<u> </u>
Waste water without faeces	no					-	Lifting units / package pump stations											sdund	<u> </u>			_						\vdash		<u> </u>
Aggressive liquids	ter	_	-		\rightarrow		b b	+	_	_									_			_	-			_		\vdash	_	+
Inorganic liquids	wat	_	-		-	_	<u>۾</u>	+	_		<u> </u>							Submersible motor	_		_	-	-			_		\vdash	_	
Activated sludge	ste	_	-			_	e –	_			_	_	_					le l	•			_	-			_				
Brackish water	Na		-		\rightarrow	_	– íg	+	_				_	_	_			ersit	_			-	-			_		\vdash	_	+
Service water Distillate	bs / \				\rightarrow		bac	+			-							- ŭ			-		-		_	_		\vdash	+	+
Slurries	- E	-	-		\rightarrow	_	ts/	+	_	_	-			-	<u> </u>			Sul		-	_	-	-			_		-+		+
Explosive liquids	Je p	-	\vdash		+	-1	<u>-</u>	+			-			<u> </u>				┝		-	_	-	-			_		\vdash	+	+-
Digested sludge	naç	+	-		\rightarrow	-	<u>l</u>	┼		_	-			-	-			ŀ				+	\vdash					-+	+	+-
Solids (ore, sand, gravel, ash)	Drainage pumps / waste water pumps	+	-		-+	-	Ē	+	+		-			-								+	-	$\left - \right $			$\left - \right $	\rightarrow	+	+
Flammable liquids		+	-		+	_	┠	+	+	-	-			-						+	-	+	-	\vdash		-		+	+	+
River, lake and groundwater					\dashv			┼	+	-	-			-	-							-	-	\vdash	\neg	1	\vdash	+	+	+
Liquefied gas			+-			-		╈	-					-				ŀ			-		1							+
Food and beverages		1	1		\neg			1	+									ŀ				+	1						+	+
Gas-containing liquids								╈	+														\vdash						+	+
Gas turbine fuels								1										ľ					\square							+
Filtered water		1																Ì		1		1								\top
Geothermal water																														1
Harmful liquids																														\square
Toxic liquids																														
High-temperature hot water																														
Heating water																														
Highly aggressive liquids																														
Industrial service water																		-										\vdash		<u> </u>
Condensate								_										-				_				_		\vdash	_	<u> </u>
Corrosive liquids		_	-		\rightarrow	_		+	_	_	_							-				_	-			_			_	-
Valuable liquids		_	-		\rightarrow	_		+	_	_								-	_	_	_	-	-		_	_		\vdash	_	+
Fuels	-	_	-		\rightarrow	_	-	+	_	_	-			<u> </u>				-	_	_	_		-			_			+	+
Coolants	-		-		\rightarrow	_		+	_	_								-	_	_	_		-			_		\rightarrow	_	+
Cooling lubricant Cooling water	-	-	-		-	_	-	+	_	_	-							ŀ		_	_	+	-		_	_		-+	+	+
Volatile liquids	-		-		\rightarrow	_		+	+	_		-			-			ŀ				-	-			_		-+	+	+
Fire-fighting water				$\left - \right $	-+	_	┠	+	+		-		\square	-		$\left - \right $		-	_	+	_	-	-	\vdash	_		$\left \right $	\vdash	_	+
Solvents		+	\vdash	$\left - \right $	+	-		+	+	+-	-			-		$\left - \right $	\square		+	+		+	\vdash	\vdash		+-	$\left \right $	\vdash	+	+
Seawater		-	-		+	-		┼	+	-				-			\square				-	-	-	\vdash	+	+	\vdash	+	+	+-
Oils		+	1		+			+	+	+	Ē			-					-+'	+	·	+	1		+		$\left \right $	\rightarrow	+	+
Organic liquids		1	1		\neg			+	+	1									\neg	+	1	1	1			1		+		+
Pharmaceutical fluids			1		\neg			╈	\uparrow											1		1	1		\neg		\square	\uparrow	+	\uparrow
Polymerising liquids		1	1		\neg			1	\uparrow		1											1	1					\top		\uparrow
Rainwater / stormwater																				1			1							\square
Cleaning agents																					İ									
Raw sludge																														
Lubricants								Γ																						
Grey water																				• ī				\square						
Swimming pool water			_		\square																		_	\square				\square		<u> </u>
Brine		_			$ \rightarrow$			\downarrow		_	-											_		\square				\vdash		<u> </u>
Feed water		_			$ \downarrow$			+	_	_	-										_	_		\square		_		\vdash		<u> </u>
Dipping paints					-+	_		+	_	_	-			<u> </u>				-	-+	+	_	-					$\left - \right $	\rightarrow	_	+
Drinking water		_			-+	_		+	_	_	-			_						\downarrow		-	-	$\mid \mid$		_	$\left \right $	\vdash		
Thermal oil		+		$\left - \right $	-+			+	_		-			<u> </u>		$\left - \right $				+	_	+		$\left - \right $			$\left \right $	\rightarrow	_	+
Hot water					\rightarrow	_		+	+		-			-		$\left - \right $		-		+	_	-		$\left - \right $			$\left - \right $	\vdash	_	+
Wash water			1																				1							

		Amacan K	Amacan P	Amacan S		Amamix	Amaprop	Amaiine	Countrol	Sewater Sewater SDN	Sewahor Sewahor	KWP	KWP-Bloc		WBC	LSA	LCC-M	BC	rcv T	GD	DHD	문			DWD	MQ		Etaprime L	Etaprime B	EZ B/L	AU	AU Monobloc
Waste water with faeces	_	◄	< · ►			- 1		_					-		>					<u> </u>	2		2 1							ш		◄
Waste water with naces	- ¥		-		듣⊢				≌⊢					Slurry pumps		-	-	+	-		-+		-	-	+-	+	Self-priming pumps	<u>i</u>	+	-		
Aggressive liquids	- 11			_	n 6			-	<u></u>			i.		Ind				-	-	\vdash	\rightarrow		+	_	+-	┿	- 3			-		
Aggressive inquids			-		cleaning			-		+	+	-		Irry		-					\rightarrow		+	-	+	+		ת 📕	+-	-		⊢
Activated sludge	sch				- Ge				ls-lo				+	SIL				+-			\rightarrow		+	-	+-	+-	- 1.5		+	-	$\left - \right $	-
Brackish water	- iel		-		ž	-				-		-	+				+	+	+	\vdash	\rightarrow		+	-	+-	+-	-1					
Service water					agitators / tank		-		or s	+	+							+-	-		\rightarrow		+	-	+-	+-	- S			-		<u> </u>
Distillate	- E		-	-	ors				ps 1	+	+	+-	-					+-	+		\rightarrow	-	+	-	+	+	-	F	+-	1		
Slurries	e b				itat		-		5	+	+																i I		+	-		
Explosive liquids	ldis'			—	/ ag		+	- '	┺┝─	+	+	+-	+-		-	_		+-	+		-		+		+-	+-	-		+	1		
Digested sludge	mer			-	ers.		+						1			\rightarrow	+	+	1	\square	\dashv		+	+	+	+	1		+			
Solids (ore, sand, gravel, ash)				-	Mixers /		+		F	+	+																i		+	1		
Flammable liquids				-			+			+	+	+	+			\neg	+	+			\neg			+	+	+			1	1		
River, lake and groundwater	_																	1			-		╈		1	\uparrow				1		
 Liquefied gas					h					\top			1												1	\top			\square			
Food and beverages														1											+	\uparrow			1			
Gas-containing liquids																										1						
Gas turbine fuels	1				Ē								1					1								T	1			1		
Filtered water	1													1																		
Geothermal water																																
Harmful liquids																																
Toxic liquids																																
High-temperature hot water																																
Heating water																																
Highly aggressive liquids	-																															
Industrial service water	-																								\perp	\perp						
Condensate	- 1																								\perp	\perp	_					\vdash
Corrosive liquids																									_	┶	_		\vdash			
Valuable liquids					-					_	_	_	_					_	_		$ \rightarrow$				\downarrow	+	_	_	<u> </u>	<u> </u>		<u> </u>
Fuels	-							_		_		_	_					_	_						_	┶	_	_	_			<u> </u>
Coolants					-					_			_												\downarrow	+	_	_	_			<u> </u>
Cooling lubricant			_	_	-	_	_	_		_	_	_				_	_	_	_		\rightarrow	_	_	_	+	+	-	-	+	-		-
Cooling water				_	-			_		+	+							+	_	\square			_	_	+	+	-					⊢
Volatile liquids		\vdash			-		+	_		+	+	_	-				_	+	_	$\left - \right $	-		+	_	+	+	-0	-	+	-		-
Fire-fighting water		\vdash	_	_	-	_	+	_		+	+	+-					_	+		$\left - \right $	\rightarrow		+	_	+	+	-	-				
Solvents		\vdash	-+	_	-	_	_	_	-	+	+				-		+	+		\vdash	-	_	+	_	+	+	-	-	╞	-	┢═┤	
Seawater Oils		\vdash		-	-		-	-		+	+					-+		+-		$\left - \right $	-+	-+	+		+-	+	-					╞
Organic liquids	_	\vdash	+	-	-		+	-		+	+	+-	+			-+	+	+-	+	$\left - \right $	-+	+	+	+	+	+-	-	┍╴	+-	-	\vdash	
Pharmaceutical fluids		\vdash		—	-		+	-		+	+	+-	+			-+	+	+-	+	\vdash	-+	-+	+	-	+	+-	-		+	\vdash	\vdash	
Polymerising liquids							+	-		+	+	+	+				+	+	+	\vdash	-	+	+	+	+	+			+	-	\vdash	
Rainwater / stormwater							+						1			\rightarrow	+	+	1	\square	\dashv		+	+	+	+	1		+			
Cleaning agents	_						\neg			+	╞	+	1				+	+	1		\neg		+	-	+	+				1		
Raw sludge												1	1								-		+		1	1			1	1		
Lubricants																										1			1			
Grey water						ĺ																										
Swimming pool water																															\square	
Brine																																
Feed water																							Ι									
Dipping paints																																
Drinking water																				\square											\square	
Thermal oil	-																								\perp	\perp			\perp		\square	
Hot water	_																	_	_	\square					\perp	1	_		\perp		\square	-
Wash water								- E																			and the second se					

	UPA C 100 EE	UPA C 100 EN	UPA C 150	UPA 200, UPA 250	UPA 300, UPA 350	UPA 400 - UPA 1100	UPA D	UPA 5 200	B Pump		Comeo	Movitec H(S)I	Movitec	Movitec VCI Multitec		Omega	RDLO	RDLP		Vitacast/Vitacast Bloc	Vitaprime	Vitastage	Vitalobe		CHTA / CHTC / CHTD	HGB / HGC / HGD	HGI	HGM YNK	LUV / LUVA	WKTB	
Waste water with faeces	sd								sd	bs					SQ				es					sb .							
Waste water without faeces		\perp			\square				sdwnd	High-pressure pumps					Axially split pumps									slan		$ \rightarrow$	\perp	\perp	\perp		L
Aggressive liquids		_	_		\rightarrow	_		_	he	le		_			i.	_	_				_	_		ile	\rightarrow	\rightarrow	+	+	+		\vdash
Inorganic liquids		+-	-		\rightarrow	_	_		Vertical turbine	essu	\vdash		\rightarrow	_	V SD	_	-			_	+	-		tior	\dashv	\rightarrow	+	+	+-	<u> </u>	\vdash
Activated sludge Brackish water	- la -	_	-		\rightarrow	_		-	cal tr	-br					Xia				enti	_	_			ven	\rightarrow	_	+	+	+-	\vdash	⊢
Service water	sible								ertic	-ie	\vdash		+			F			- ad	-	-	-		con	+	+	+	+	+	⊢	-
Distillate	lers		+-			-		-:	°		\vdash					F	-			-	-			ion	\rightarrow	-+	+	+	+	\vdash	-
Slurries	- upu	+	+		\rightarrow					-			-		-				<u>o</u> –					stat	-	-	+	+	+	H	
Explosive liquids	- ~ -	+	\square																e a l		1			ver	1		+	+	+	H	
Digested sludge																			rag					bod							
Solids (ore, sand, gravel, ash)																			beverage and pharmaceutical industries					Pumps for power station conventional islands							
Flammable liquids					\square														°,					sdu					\perp	\square	
River, lake and groundwater																			Hygienic pumps for the food,		_			Pur	$ \rightarrow$	\rightarrow	\perp	\perp	_		L
Liquefied gas		_	-		\rightarrow	\rightarrow		_		-			_			-	-		e –					ŀ	\rightarrow	\rightarrow	+	+	+		<u> </u>
Food and beverages		+-	-		\rightarrow	-		_	_	-		_	\rightarrow	_	-	-	-							ŀ	\rightarrow	\rightarrow	+	+	+-	\vdash	⊢
Gas-containing liquids Gas turbine fuels		-	+		\rightarrow			-		-	\vdash		\rightarrow		_	-	-		sq –	_	-	-		ŀ	\rightarrow		+	+	+	\vdash	┝
Filtered water		+-	+		-+	-		-		-	\vdash		+			⊢	-			_	+-	-		ŀ	-+	-	+	+	+	\vdash	-
Geothermal water		+-	+		\rightarrow	\neg				-			\rightarrow		_		-	-	2	-	+	-			\rightarrow	-	+	+	+	\vdash	
Harmful liquids		+	+											+	-			-	gle		-				+	-	+	+	+	\vdash	
Toxic liquids	_	+	\uparrow																<u>-</u>						1	\neg	+	+	+	H	
High-temperature hot water																															
Heating water	_																														
Highly aggressive liquids					\square										_											$ \rightarrow$	\perp	\perp	\perp		
Industrial service water	_														_					_	_			-	_	\rightarrow	\perp	+	+		\vdash
Condensate		_	-		\rightarrow	\rightarrow		_		-									_	_	_	-					┛┤╹		4		<u> </u> _
Corrosive liquids Valuable liquids		+-	-		\rightarrow	\rightarrow		-	-	-	\vdash		\rightarrow	+	-	-	-		┢	_				ŀ	\rightarrow	\rightarrow	+	+	+-	\vdash	-
Fuels	-	+-	+		\rightarrow	-	_	-		-	\vdash		\rightarrow				-		┢	_	+	-		ŀ	\rightarrow	\rightarrow	+	+	+	\vdash	╞
Coolants		+-	+		\rightarrow	\neg		-	-	-	\vdash		\rightarrow		-		-		┢		+	-		ŀ	\rightarrow	\rightarrow	+	+	+	\vdash	-
Cooling lubricant		+	+		\rightarrow	\neg				-			\rightarrow				+		F		+	-			\rightarrow	\rightarrow	+	+	+	\vdash	-
Cooling water													-						ŀ		+	-			\neg	\neg	+	+	+	\vdash	
Volatile liquids		+	1																								+	+	+	H	
Fire-fighting water																														\square	
Solvents																															
Seawater		\perp																						-		$ \rightarrow$	\perp	\perp	\perp		
Oils		_	_		$ \rightarrow$					_							_				_			-	\rightarrow	\rightarrow	\perp	\perp	_		L
Organic liquids		+-			\rightarrow	-+		_	_	-	\vdash	_	\rightarrow	-	-	-	-		-	-	-	-			\dashv	+	+	+	+	\vdash	\vdash
Pharmaceutical fluids Polymerising liquids		+	-	$\left - \right $	+	+	-+	_		-	\vdash	-	-	_	-	-	-								+	+	+	+	+	\vdash	\vdash
Rainwater / stormwater		+-	+		+	\dashv	-+	-	-		\vdash	\rightarrow	+	+	-		\vdash		-	+	+-	-			+	+	+	+	+	\vdash	⊢
Cleaning agents		+	+		+	+					\vdash		+				+		-	-	+	-			+	+	+	+	+	\vdash	-
Raw sludge		+	\uparrow		\neg	+						\neg	+	+							1				+	+	+	+	+		
Lubricants		1	1		\uparrow	\uparrow							\uparrow				T				1				\uparrow	\uparrow	+	+	1		
Grey water																															
Swimming pool water																															
Brine				\square	\square						\square														_	\square		\perp	\perp		
Feed water		+	\vdash		$ \rightarrow$	_					$ \downarrow $				-						_	<u> </u>			┛	┛	■₽		⊥		<u> </u>
Dipping paints		+-	+		_				_		╞	_	_		-	-	-		-		-	-			\dashv	+	+	+	+	\vdash	\vdash
Drinking water Thermal oil			-							4	╞═┤				-	F									+	+	+	+	+	\vdash	\vdash
		1	1	i		- 1															1								1	1 1	1
Hot water		+-	1		-+						\vdash	\rightarrow	+							-	+	-			\rightarrow	+	+	+	+	\vdash	\vdash

																								Eco					
																								Щ					
																								PumpDrive 2/PumpDrive 2					
		1																						÷					
	6																												2 0
	SEZ / SEZT / DHZ / DNZ	ì																						E					KSB Leakage Sensor
	H																					ш		E S	~				۸ N
		: ≥							ar	5						S						ne s-		e	e		er	5	ge
		SNW / PNW	Ę						RHD LIIV Nuclear							RPH-RO Multitec-RO		2				KSB SuPremE KSB UMA-S		Ξ	PumpDrive R		PumpMeter	KSB Guard	ak
	s /	2 2	Beveron						ž		-					RPH-RO Multitec		RC / RCV		DU / EU		N D		G	. 멸		d	ษี	Le
	6	ł≧	ē	SPY	RER	RSR	RUV	PSR	RHD	RHM	RVM	RHR	RVR	Ž		ΕĮ		$\overline{\mathbf{u}}$	Ľ,	3⊇		SB SB		۲, E	E L		Ľ	SB	SB
	v	n v	-	-	~	: ~	~	_ _	<u>~</u> –	1 82	~	~	~	~		~ 2		~	-		-						₽.		×
Waste water with faeces	ds.				SU										sis		bs		μ		Drives		us L		_	sis			
Waste water without faeces	lan				power stations										2		sdwnd		ter		ri		ter			and diagnosis			
Aggressive liquids	i - S				sta										OSI		t D		sys				SVS	5		iag			
Inorganic liquids	na	1			ler	1	1			1					rse		Ien		ng				ed			- P			
Activated sludge	Ę	-			8	+	1			+-	+				S		em		Ē	+			spe		_	an			
Brackish water	Ver		+	-	7	+	+			+-	+		\rightarrow	-	2		displacement	_	Fire-fighting systems				Variable speed systems		_	ng			
	0		-	_	nuclear	-	-			-				_	â		lis	_	ii-	_			-iat		╞	ori		_	
Service water					nu –	_	<u> </u>			_	-			_	Ę.		e e		"	_	-		Var	-	+	Dit.			
Distillate	atic	_			- Jo	_	-	\square		_	_		\square		ina		Positive			_			-		_	Monitoring			
Slurries	st				DS 1										sal		Pos												
Explosive liquids	vel				Pumps for										de														
Digested sludge	power station conventional islands				E										Pumps for desalination by reverse osmosis														
Solids (ore, sand, gravel, ash)		1					1			1	1		\square		bs										_			\neg	1
Flammable liquids	os f	+	+			1	1			+	+			-	E					+									-
River, lake and groundwater	Pumps for						-	$\left - \right $	\vdash	+-	+	\vdash	\vdash		6	-		-							_				
Kiver, lake and groundwater	2			-			-	$\left - \right $		+-		$\left - \right $	\vdash	_	-	_	-	\vdash							_				
		_	$\left \right $			_	-			_	-				-	_	-			_			-		_	-			_
Food and beverages		_			_		_							_	-		_						_			-		_	
Gas-containing liquids																													
Gas turbine fuels																													
Filtered water																													
Geothermal water																													
Harmful liquids																	1												
Toxic liquids		1													ŀ		1						-					_	
High-temperature hot water						-	1			-	1				ŀ										_				
Heating water		+	+			+	+			+-	+				ŀ		-	_					-			-			
Highly aggressive liquids			+			-	-			-	-				ŀ		-	_					-		_	-	-		
			-	_		_	-			_	-			_	-	_	-			_			-		_	-	-		
Industrial service water			╷╹			_				_	_			_	-		-						_		-	-	-	-	
Condensate							_				_				-								_		_				
Corrosive liquids																									_			_	
Valuable liquids																													
Fuels																													
Coolants																													
Cooling lubricant		1																											
Cooling water						+	+			+-	+				ŀ		-	_		-				F	+-	-		-	
Volatile liquids				-	-	+	+			+-	+	-	-	-	ŀ	_	-	_					-			-	-		
			+	_			-			-				_	-		-	_					-		_	-		-	
Fire-fighting water		-	$\left \right $			_	-	$\left \right $		-	-		\square	_	-								-					-	
Solvents		_				_	-			_	-						_			_			-		\vdash				
Seawater																									\downarrow				
Oils																									\perp				
Organic liquids																													
Pharmaceutical fluids										Τ																			
Polymerising liquids		1								1																			
Rainwater / stormwater						-	1			-	1				ŀ					+			-		_	-			
Cleaning agents						+	+			+-	+				ŀ		-			-					_				
Raw sludge		-	+			-	-			-	-				-		-	_		-			-			-	-	-	
			+	_		-	-			_	-			_	-	_	-	_		_			-		_	-			
Lubricants		-				_	-			-	-	\square	\square				-			_	-				_		\square		
Grey water		_				_	-			_	-						-				-						\square		
Swimming pool water						_																			_				
Brine																									_				
Feed water																													
Dipping paints																													
Drinking water							1			1	1														_				
Thermal oil		+	+			1	1			+	+		\vdash							+					_				
Hot water		+-	+			+	1	$\left - \right $		+-	+		\vdash	-	ŀ					+			-		_				
Wash water		+	+			-	-	$\left - \right $		+-	-	\vdash	\vdash	_		_	-						-		+-				
							1				1																	-	-

Normal Normal<																																	
Aquadure solution B </th <th></th> <th></th> <th>,</th> <th></th>			,																														
Aquaduter Base of the second		erm S N			erm	erm S				0	οZ			N	~			ē		_		шB	L u	>	rn	ö							
Aquacture of stress of st		Calio-Th	Calio_Th		Calio-Th	Calio-Th	, : ,	Calio S	Calio 7	Calio Pr	Calio Pr		Etaline	Etaline	Etaline-		ILNR	Megalir		Etanorn	Etabloc	Etachro	Etachro	Etanorn	Megano	Megabl							
District heating Image: Constraint of the second	•	eq		ed			eq					bs							ps														
District heating B <td></td> <td>spe</td> <td>+</td> <td>spe</td> <td></td> <td></td> <td>spe</td> <td>_</td> <td>+</td> <td>_</td> <td></td> <td>und</td> <td>_</td> <td>\rightarrow</td> <td></td> <td></td> <td></td> <td>-</td> <td>mud</td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td>_</td> <td></td> <td></td> <td>\rightarrow</td> <td>\rightarrow</td> <td>\rightarrow</td> <td>+</td> <td>+</td> <td>_</td>		spe	+	spe			spe	_	+	_		und	_	\rightarrow				-	mud					_	_			\rightarrow	\rightarrow	\rightarrow	+	+	_
District heating Note Note Note Fire-fighting systems Image: State in the sta		ixed	+	able	-		able	+	+	+	\vdash	line	_	+	+			+	oled								\square	\rightarrow	+	+	+	+	+
District heating Note Note Note Fire-fighting systems Image: State in the sta		ors, 1	╈				vari		╈	+	\square	Ļ							coup		_	_	_					-	╡	+	+	+	+
District heating Image: Constraint of the second		ulato		tors.			tors,												ose-										\square	\square		T	
District heating Image: Constraint of the second		circi	_		_		culat		+	_	-			+		_	_		I / cl	_	_		_	_		•	$ \vdash$	\rightarrow	\rightarrow	\rightarrow	+	+	_
District heating Image: Constraint of the second		ater	┼	_ cir	-	\vdash	ü	+	+	+		-	_	+	+	_	_	-	lisec	_	-	_	-	_	_		$ \dashv$	+	\rightarrow	+	+	╀	+-
Obstict heating Image: Construction Image: Construction<		В –	╈	ate	-	-	-	+	+	+		ŀ		+	+			+	darc	\neg	+							\rightarrow	+	+	+	+	+
Obstict heating Image: Construction Image: Construction<	Dewatering	kin			0														tan														
Solids transport Image: Solid stransport		Drir		hkir						\square									^o								Д	\square	\square	\square	\bot	\bot	
Fire-fighting systems Image: State Sta			_	Ď	-	\square		•										-			$ \rightarrow$						$ \dashv$	\downarrow	\downarrow	\downarrow	+	+	+
Gesthermal energy Drawdown of groundwate levels Domestic water supply Plod cantrol / coast protection Homogenisation Nuclear power stations Boiler recirculation stems Boiler recirculations Boiler recirculations Boiler recirculations Condensate transport Condensate transport Condensate transport Condensate transport Plot and paper industry Plot and call paper industry Stade deposal Studge processing Studge processing Solar therma energy systems Naming pools Solar therma energy systems Naming pools Solar therma energy systems Plot and call transpont Solar therma energy systems Solar therma energy systems Solar therma energy systems Nerging not subplus frains Solar therma energy systems Plot and call transpont Solar therma energy systems Plot and call transpont Plot and tho			+	-	-	$\left - \right $	-	_	+		$\left \right $		_	+	,							-	\rightarrow	_			$ \square$	+	+	+	+	+	+-
Drawdown of groundwater levels Maintenance of groundwater levels Domestic water supply Flood control / cost protection Hodustrial recirculation systems Beiler feet applications Beiler recirculation Wate water treatment plants Air-conditioning systems Air-conditioning systems Paint shops Flood and beverage industry Seawater desalination / reverse osmols Mixing Offshore platforms Pulp and paper industry Pipelines and tank farms Pipelines and			+		┝	\vdash		+	+	+	$\left \right $		+	+	+					-			+	-	-		\dashv	+	+	+	+	+	+
Maintenance of groundwater levels Domestic water supply Flood control / coast protection Homogenisation Homogen			┢			H		+	+	+			\neg	+	+	+	+	-		-	+	\neg	+		\neg		\neg	+	+	+	+	+	+
Flood control / cost protection Image: station Industrial recirculation systems Image: stations Nuclear power stations Image: stations Boiler recirculation Image: stations Boiler recirculation Image: stations Air conditioning systems Image: stations Air conditioning systems Image: stations Condensate transport Image: stations Condensate transport Image: stations Condensate transport Image: stations Seawater desalination / reverse ormosis Image: stations Mixing Image: stations Offshore platforms Image: stations Pulp and paper industry Image: stations Photheres ormosis Image: stations Pulp and paper industry Image: stations Photheres ormosis Image: stations Photheres ormosis Image: stations Photheres ormosis Image: stations Protochemical Industry Image: stations Photheres Image: stations Photheres Image: stations Protochemical Industry Image: stations Predencial Industry																																	
Homogenisation Imagenisation																																	
Industrial recirculation systems Nuclear power stations Boiler feed applications Boiler recirculation Boiler recirculation Boiler recirculation Condensate transport Condensate transport Condensate transport Condensate transport Boiler recirculation Condensate transport Condensate transport Condensate transport Condensate transport Pint shops Food and beverage industry Seawater desalination / reverse osmosis Mixing Pint shops Mixing Pint shops Mixing Pint shops Colling of routis Mixing Pint shops Mixing Pipelines and tank farms Refineries Refineries	· · · · · · · · · · · · · · · · · · ·		_	_			-			_		-	_					_			\rightarrow						\vdash	\rightarrow	\rightarrow	\rightarrow	+	\downarrow	_
Nuclear power stations Image: Constraint of the state of the st		-	┼	_				_				-	_	_	_			+		_	_	_	_	_	_	_		\rightarrow	\rightarrow	+	+	+	+-
Boiler feed applications Boiler recirculation Wate water treatment plants Air-conditioning systems Condensate transport Paint shops Flood and beerge industry Post and beerge industry Pulp and paper industry Pulp and paper industry Pharaceutical industry Pharaceutical industry Pharaceutical industry Pharaceutical industry Pharaceutical industry Pipelines and tak farms Cleaning of stormwater tanks / storage sweers Studge processing	· · · · · · · · · · · · · · · · · · ·		╎╸		F		-					-	-	╸	-			+		-	-	-	-	-			$ \rightarrow$	+	+	+	+	+	+-
Waste water treatment plants Image: Condensate transport												-		+				-			\neg							+	+	+	+	+	+
Air-conditioning systems Image: Condensate transport <				_			1			_																							
Condensate transport Coling circuits	<u>`</u>																_					-	-										
Cooling circuits A					-			•				-			_			-			-	-		_		_		\rightarrow	\rightarrow	\rightarrow	+	+	_
Paint shops	· · ·	-										-			_					\rightarrow	_	-	-	_			\square	+	\rightarrow	+	+	╀	_
Food and beverage industry Image: Seawater desaination / reverse osmosis Image: Seawater desaination / reverse osmosis Image: Seawater desaination / reverse osmosis Mixing Image: Seawater desaination / reverse osmosis Image: Seawater desaination / reverse osmosis Image: Seawater desaination / reverse osmosis Offshore platforms Image: Seawater desaination / reverse osmosis Image: Seawater desaination / reverse osmosis Image: Seawater desaination / reverse osmosis Offshore platforms Image: Seawater desaination / reverse osmosis Image: Seawater desaination / reverse osmosis Image: Seawater desaination / reverse osmosis Pulp and paper industry Image: Seawater desaination / reverse osmosis Image: Seawater desaination / reverse osmosis Image: Seawater desaination / reverse osmosis Process engineering Image: Seawater desaination / reverse osmosis Image: Seawater desaination / reverse osmosis Image: Seawater desaination / reverse osmosis Cleaning of stormwater tarks / storage servers Image: Seawater desaination / reverse osmosis Cleaning of stormwater tarks / storage seawers Image: Seawater desaination / reverse osmosis Image: Seawater desaination / reverse osmosis Image: Seawater desaination / reverse osmosis Image: Seawater desainatino			╞			-	-	-			-	ŀ	-	-						-	-	-	-+		-	_		\rightarrow	+	+	+	+	+
Mixing Image: Constraint of the second s	Food and beverage industry																																
Offshore platforms Pulp and paper industry Petrochemical industry Petrochemical industry Pharmaceutical industry Petrochemical industry Pharmaceutical industry Petrochemical industry Pharmaceutical industry Petrochemical industry Pipelines and tank farms Petrochemical industry Refineries Petrochemical industry Flue gas desulphurisation Petrochemical industry Refineries Petrochemical industry Cleaning of stormwater tanks / storage severs Petrochemical industry Shipbuilding Petrochemical industry Petrochemic																																	
Pulp and paper industry Petrochemical industry			_	_			_	_		_		-		\rightarrow				_		_	_	_	_					\rightarrow	\rightarrow	\rightarrow	\perp	+	_
Petrochemical industry Pharmaceutical industry Pharmaceutical industry Pipelines and tank farms Refineries Pipelines Refinerulation Pipelines Dredging Pipelines Sludge disposal Pipelines Sludge processing Pipelines Sludge processing Pipelines Summing pools Pipelines Pountains Pipelines Pountains Pipelines Pountains Pipelines Process engineering Pipelines Process engineering Pipelines Process engineering	· · · · · · · · · · · · · · · · · · ·	-	+	_	-	-	-	_	_			-	_	+						-	\rightarrow	_	_	_	_		$ \rightarrow$	\rightarrow	\rightarrow	+	+	+	+-
Pharmaceutical industry Pipelines and tank farms Refineries Image: Structure industry Pipelines and tank farms Refineries Image: Structure industry Reinvater harvesting Image: Structure industry Recirculation Recirculation Recirculation Image: Structure industry Recirculation Image: Structure industry Image:	· · · · · · · · · · · · · · · ·	-	+	-		\vdash	-	+	+	-		-	-	+	+	_	-	+		-	-		+			-	$ \rightarrow$	+	+	+	+	+	+
Refineries Image: Constraint of the gas desulphurisation Image: Constraint of the gas desus desulphurisation Image: Constraint of the gas de			╈	-	-	\square	-	+		-		-		╈							\neg		-					-	+	+	-	+	+
Flue gas desulphurisation Rainwater harvesting Rainwater harvesting Recirculation Recirculation Recirculation Dredging Recirculation Shipbuilding Recirculation Sludge disposal Recirculation Sludge processing Recirculation Sludge processing Recirculation Sudge disposal Recirculation Sludge processing Recirculation Sudge disposal Recirculation Recirculation Recirculation Recirculation Recirculation Recirculation Recirculation Recirculation Recirculation Recirculation Recirculation Recirculation Recirculation <td></td>																																	
Rainwater harvesting Image: Severs Image:																																	
Cleaning of stormwater tanks / storage severs Image: Cleaning of store tanks / storage severs Image: Cleaning store tanks / storage severs Image: Cleaning sev			_	_			-			_		-						_			\rightarrow						\vdash	\rightarrow	$ \rightarrow$	\downarrow	+	+	_
Recirculation Dredging Shipbuilding Shipbuilding Sludge disposal Sludge processing Sludge processing Sludge processing Shipbuilding Shipbuilding Sludge processing Sludge processing Sludge processing Shipbuilding Shipbuilding Sludge processing Sludge processing Shipbuilding Solar thermal energy systems Solar thermal energy systems Shipbuilding Shipbuilding Shipbuilding Solar thermal energy systems Shipbuilding Shipbuilding Solar thermal energy systems Shipbuilding Shipbuilding Shipbuilding Shipbuilding Shipbuilding Solar thermal energy systems S			+	-	\vdash	\vdash	-	+	+		\square		+	+	+	+	+-	-		\dashv	+		+	_			\square	+	+	+	+	+	+
Dredging Shipbuilding Sludge disposal Sludge disposal Sludge processing Snow-making systems Meavy oil and coal upgrading Solar thermal energy systems Solar thermal energy systems Fountains Fountains Meaving of pits, shafts, etc. Process engineering			+	-		\vdash		+	+	+	\square		-	+						\dashv	+	-	+	-			\neg	+	+	+	+	+	+-
Shipbuilding Sludge disposal Sludge disposal Sludge processing Snow-making systems Heavy oil and coal upgrading Solar thermal energy systems Solar thermal energy systems Fountains Fountains Fountains Shipbuilding Solar thermal oil circulation Thermal oil circulation Process engineering			+					+	+	+	\square			\uparrow		1	+-	+-		\neg	+					•		+	+	+	+	+	+
Sludge processing Snow-making systems Heavy oil and coal upgrading Swimming pools Solar thermal energy systems Fountains Keeping in suspension Merral oil circulation Draining of pits, shafts, etc. Process engineering	Shipbuilding																•																
Snow-making systems Image: Constraint of the systems Heavy oil and coal upgrading Image: Constraint of the systems Swimming pools Image: Constraint of the systems Solar thermal energy systems Image: Constraint of the systems Fountains Image: Constraint of the systems Keeping in suspension Image: Constraint of the systems Thermal oil circulation Image: Constraint of the systems Process engineering Image: Constraint of the systems						Щ				+										_	_	[[[Ш	\downarrow	\downarrow	\downarrow	\perp	\downarrow	\downarrow
Heavy oil and coal upgrading Image: Constraint of the sector of the			+	-	-	$\left - \right $	-	+	+		$\left \right $		-	+		+	_	-		-	-		\rightarrow				$ \rightarrow$	\rightarrow	\rightarrow	+	+	+	_
Swimming pools Image: Solar thermal energy systems Solar thermal energy systems Image: Solar thermal energy systems Fountains Image: Solar thermal energy systems Thermal oil circulation Image: Solar thermal energy systems Draining of pits, shafts, etc. Image: Solar thermal energy systems Process engineering Image: Solar thermal energy systems Image: Solar thermal energy systems Image: Solar thermal energy systems Image: Solar thermal energy systems Image: Solar thermal energy systems Image: Solar thermal energy systems Image: Solar thermal energy systems Image: Solar thermal energy systems Image: Solar thermal energy systems Image: Solar thermal energy systems Image: Solar thermal energy systems Image: Solar thermal energy systems Image: Solar thermal energy systems Image: Solar thermal energy systems Image: Solar thermal energy systems Image: Solar thermal energy systems Image: Solar thermal energy systems Image: Solar thermal energy			+	-	-	$\left - \right $	-	-	+	+	$\left \right $		_	+	+	+		+-		\dashv	+	-	\rightarrow	_	-		$ \dashv$	+	+	+	+	╀	+-
Solar thermal energy systems Image: Constant of the systems of th			+			\square		+	+	+			+	+													\neg	+	+	+	+	+	+
Keeping in suspension Image: Constraint of the subsection Thermal oil circulation Image: Constraint of the subsection Draining of pits, shafts, etc. Image: Constraint of the subsection Process engineering Image: Constraint of the subsection	Solar thermal energy systems																															1	
Thermal oil circulation Image: Constraint of the system of the syste																												\square	\square	\square	\bot	T	
Draining of pits, shafts, etc. Process engineering			_			\square		+	_	_				\downarrow			_	-		$ \rightarrow$	$ \rightarrow$						$ \rightarrow$	\downarrow	\downarrow	\downarrow	+	+	+
Process engineering			+	-	┝	\vdash	-		+	+	\square		_	+	+			-		+	+	-	+	_	-		\square	+	+	+	+	+	+
			┼		-	\vdash	-	+	+	+	\square		+	+	+			+		\dashv	+		+	\neg	\neg		\neg	+	+	+	+	+	+
	Heat recovery systems																											+	+	+	+		1
Hot-water heating systems Image: Amplitude and the systems Image:	Hot-water heating systems																									_						T	
Washing plants			_			\square			_	_						_	_	_		_	$ \rightarrow$	_	_				$ \rightarrow$	\downarrow	\downarrow	\downarrow	+	+	_
Water treatment Water straction Water straction <td< td=""><td></td><td></td><td>+</td><td>-</td><td>┝</td><td>$\left - \right$</td><td></td><td>+</td><td>+</td><td>+</td><td>$\left \right$</td><td></td><td>-+</td><td>+</td><td></td><td></td><td>_</td><td></td><td></td><td>-</td><td>-</td><td></td><td>_</td><td>_</td><td></td><td></td><td>\square</td><td>+</td><td>+</td><td>+</td><td>+</td><td>+</td><td>+-</td></td<>			+	-	┝	$\left - \right $		+	+	+	$\left \right $		-+	+			_			-	-		_	_			$ \square$	+	+	+	+	+	+-
Water extraction Image: Contraction Image: Contraction Image: Contraction Water supply Image: Contraction Image: Contraction Image: Contraction							-	+	+	+-	\vdash							_		-	-		-				\neg	+	+	+	+	+	+
Sugar industry Image: Sugar industry																														\uparrow			

		НРК-L	НРН НРК		Etanorm SYT / RSY	Etabloc SYT	Etaline SYT		MegaCPK	CPKN	CPKNO		Magnochem	Magnochem 685	Magnochem-Bloc	Etaseco / Etaseco-l		RPH	RPH-LF	КРНЬ / КРН А / КРНЬА	RPH-V	CTN	CHTR	CHIKA CINCP / CINCN	INVCP	Estigia	RWCP / RWCN	WKTR		Hya-Rain / Hya-Rain N	Hya-Rain Eco	
Aquacultur	e s	-			sd							sd					sq								-				۳s			
Spray irrigatio	2		_		bumbs	_	_	sdwnd				Seal-less pumps					Process pumps	_	_			_		_	_	╞			Rainwater harvesting systems			_
Minin General irrigatio	ter			-	<u> </u>	+		ical				less	_	+	\rightarrow		less	_	-	-		\rightarrow			+	┢	H		ng sy			_
Chemical industr		\vdash			Hot water / thermal oil	┼	+	Standardised chemical				eal-					Proc												/esti		-	+
Dock facilitie	es f			-	the			ed cl																					harv			
Drainag					ter /			rdise																					ater	\square		
Pressure boostin				_	wat	_	_	ndai				-	_			_	_	_			\vdash		•		+	╞			n wa	\rightarrow	_	_
Sludge thickenin Disposa	-				– H	+	-	Sta	\vdash			-		_	_		_	┝	-	-	\square	_	-	+	+	-			Rai	+	+	+
Dispose	_	\vdash	_			+	-		\vdash			ŀ		+	-		-	⊢	-	-	\vdash							-		+	+	+
Descaling unit						┢	1					-							1					+		F			1	+		-
District heatin	g																															
Solids transpo																																
Fire-fighting system				_		_	_					-		_			_	⊢					_	+	+	_				\rightarrow		_
Geothermal energ Drawdown of groundwater leve			-			-	-			_		-		-	-	_	-			-	\vdash	-+	-+	+	+	┢	\vdash	_		+	+	_
Maintenance of groundwater leve	_			-		+	-					-	-	+	\neg		-	┢	-	-	\vdash	-								\rightarrow	+	_
Domestic water suppl						1	1					ŀ							+	-				+-	+-	F						-
Flood control / coast protection (stormwate	r)																															
Homogenisatio																																
Industrial recirculation system						_	-					- I-		_	-						\vdash	_	_			┦			-	\rightarrow	\rightarrow	
Nuclear power statior Boiler feed applicatior	_			_		┤■			\vdash			-				_	-				\vdash	_			+	–	$\left - \right $		┥┝	+	+	+
Boiler recirculation						┼╴	1					-		+	\neg		-	┢	+	-	\vdash	-		-	+-	+	$\left - \right $			-	+	-
Waste water treatment plan	_											-													i T							1
Air-conditioning system	IS																															
Condensate transpor						_	_			_		-	_	_								_		_	_					\rightarrow	\rightarrow	+
Cooling circuit Paint shop					⊢	-	-			-		-		-				┝	-	-			_							+	+	+
Food and beverage industr	-	\vdash	_				-					-					-	⊢	-	-	\vdash							-		+	+	
Seawater desalination / reverse osmos	-													-					+			_			+-	F			1	+	+	1
Mixin	g																															
Offshore platform																																
Pulp and paper industr	-					_	_				H	-	_	_	_		_		_	_		_								\rightarrow	_	_
Petrochemical industr Pharmaceutical industr		\vdash	_	-	-	+-	-				Η	- I-				_	_			-						-			-	\rightarrow	+	+
Pipelines and tank farm	-	\vdash		-		+	-				Π		-	-					+			-								-	+	+
Refinerie														-						<u> </u>							H		1	+		
Flue gas desulphurisatio																							•									
Rainwater harvestin	_																															_
Cleaning of stormwater tanks / storage sewer			_	_		+-	-					-	_	_		_	_	_		-	\vdash			+	+					\rightarrow	\rightarrow	_
Recirculatio Dredgin		\vdash		-		+	-		\vdash			-	-	+	+		-	┢	-	-	\vdash	-	-	+	+	+	$\left - \right $			+	+	+
Shipbuildin		\vdash				+	+					ŀ		+	\neg		-		+	-	\vdash		-	+						+	+	
Sludge disposa																								+	+				1			1
Sludge processin																																
Snow-making system						_						-					_	L	_					_	_	<u> </u>				\rightarrow		
Heavy oil and coal upgradin Swimming poo			_	_		-	-			-		-		-			_					_			+	-	$\left - \right $			+	-	+
Solar thermal energy system	_	\vdash	_	-		-	-			_		-	+	+	\neg		-	-	-	-	\vdash	\rightarrow	-	+	+-	-			-		+	+
Fountair												F		+	\neg				+				+	+	+	\vdash				-	+	+
Keeping in suspensio	n																															
Thermal oil circulatio									Ц																	Ļ				\square		
Draining of pits, shafts, et		⊢	_	_					Ļ		H		_	_	_	_	_	ŀ	-	-	Ļ	_	_	+	+-	<u> </u> _	Ŀ	-		+	-	_
Process engineerin Heat recovery system	-			-		+	+									•	-	-												+	+	+
Hot-water heating system						+	+												-	-	\vdash	\rightarrow	+	+	+	\vdash	\vdash	-		+	+	+
Washing plant										_	H																			+		
Water treatmer	ıt																															
Water extractio		\square		_					\square				_	_	_						\square									\square		
Water suppl Sugar industr		\vdash		_		-	-						_	_				-	_	_	\square	$ \rightarrow$								\downarrow	+	

								ಕ																						
								pa																						
								ē																						
								ů							ac	ad														
								asi							Ē	Ê														
							KSB Delta Macro	KSB Delta Solo/Basic Compact	. <u>u</u>	2	0				Hya-Solo D FL Compact	Hya-Duo D FL Compact	Hya-Duo D FL-R													
		ç	Multi Eco-Top				١a	ĕ	KSB Delta Basic	KSB Delta Primo	KSB Delta Solo		Hya-Solo D FL	Hya-Duo D FL	1	i i	Hya-Duo D FL-R	שיים												
		Multi Eco-Pro	÷				a l	ia S	E	Б	a N	Hya-Solo D	0	0	0		o y	Safety Boost												
	Multi Eco	йũ	Ĕ		0 2	z	el 1	elt.	E	elt.	e l	ĕ	ĕ	onc	ĕ	ñ,	ñ S	N N												
	Ę	독	Ē	N oXI	Ixo-Pro	FIITTA N	8	8	8	8	8	a-S	a-S	a-L	a-S	- <u>e</u>	<u>ب</u> م	fe h												
	Ē	ž	ž	×.	ž	Ē	Υ	KS	X	KS	S	Ŧ	Ŧ	Ŧ	Ŧ	÷ ÷	£υ	Sa, u												
Aquaculture	s					s																								
Spray irrigation	sdund					systems							\rightarrow											+-	+				+	+
Mining	nd -		╎━╎	-		yst			-	-	-	-	+	-					$\left \right $									_		+
	8	+-	-	_	_				_	_	_	_	_	\rightarrow		+	_				\rightarrow	\rightarrow						_		
General irrigation	od 🗖					ost							\rightarrow	_	_	-+					\rightarrow	\rightarrow		_	_				_	
Chemical industry	. <u> </u>	_				A				_														_					_	
Dock facilities	<u>ک</u>					Pressure booster																								
Drainage	Wi					essi																								
Pressure boosting	t,					P																								
Sludge thickening	in																													
Disposal	2								\neg	\neg			\neg												1					1
Dewatering	ont	1		\neg	+				\neg	\neg	\neg	\neg	\neg	-	\neg	+		1						1	1			1	1	\square
Descaling units	000	+		+	+				\rightarrow	+	+	+	+	+	+	+	+	+			\neg	+	+	+	+			+	+	+
District heating	lati	+-	$\left \right $	\rightarrow	+			$\left \right $	\rightarrow	+	+	-+	\rightarrow	\rightarrow	+	+	-	+-	\vdash	$\left - \right $	-	-		+-	+			+	-	+
Solids transport	tom	+-	$\left \right $	+				$\left - \right $	\rightarrow	+	+	-+	\rightarrow	\rightarrow	+	+			\vdash	$\left - \right $				+-	-	\square	\vdash	+	-	+
	aut	+	$\left \right $	-+	_		-	$\left \right $	-+		_	-+		-	-		-	-	$\left \right $	$\left - \right $	-+		_	+		$\left - \right $		_	+-	+
Fire-fighting systems	<u>-</u>	-	$\left \right $	-+	-		-	$\left - \right $	\rightarrow	_	-+	-+								$\left \right $	_	_		+	-			_	-	+
Geothermal energy	Domestic water supply systems with automatic control unit / swimming pool		\square	\rightarrow			-	\square	$ \rightarrow$	_		_	\rightarrow	_	-+		_		- -			_	_	_			\square	_		
Drawdown of groundwater levels	em:	_	\square				1												\square					1	_					-
Maintenance of groundwater levels	yste																													
Domestic water supply	y s)																													\square
Flood control / coast protection (stormwater)	Idd	1			Ť					Í											Ť			1	1					
Homogenisation	sul	1									-		-											+	1			-	1	-
Industrial recirculation systems		-	$\left \right $			-				-+	+	-	-	-		-		-			\neg	\rightarrow		+	+				-	+
Nuclear power stations	N N	+	$\left \right $			-					+		-	-		+	-	_			-	+		+	+					+
	÷;	_	+	_		_		$\left \right $			\rightarrow		\rightarrow	_	_	_	_	_			\rightarrow	\rightarrow		_	-				-	+
Boiler feed applications	mes	_		_		_			_	_	\rightarrow	_	\rightarrow	_	_	\rightarrow	_	_			\rightarrow	_	_	_	_				_	
Boiler recirculation	<u>5</u>	_				_																							_	
Waste water treatment plants																														
Air-conditioning systems																														
Condensate transport																														\Box
Cooling circuits																														<u> </u>
Paint shops		1																						1					1	+
Food and beverage industry		+	$\left \right $							-	+	\rightarrow	-	-							\rightarrow	+		+	+				-	+
Seawater desalination / reverse osmosis		+	$\left \right $			-		$\left \right $			+		\rightarrow	-				+-			\rightarrow			+-	+					+
			$\left \right $			-					-+		\rightarrow	-							\rightarrow				+			_		+
Mixing			$\left \right $		_	_	-				_		_	_	_	_	_		$\left \right $		-	-+		_				_		
Offshore platforms		_				_								_				_				\rightarrow		_					_	<u> </u>
Pulp and paper industry		_				_								_				_												<u> </u>
Petrochemical industry																														
Pharmaceutical industry																														
Pipelines and tank farms																														
Refineries			\square																					Τ	1					\square
Flue gas desulphurisation		1	$ \uparrow $		\uparrow			\square		\uparrow			\neg		\uparrow			1						1	1					\square
Rainwater harvesting													\rightarrow	\rightarrow	+	+	+							1	1			+	1	\vdash
Cleaning of stormwater tanks / storage sewers		1					F	+	-	-	-+	-+	+	+	+	+	+				-	-	+	+	-			-	-	+
Recirculation		+	$\left \right $	\rightarrow	+		-	$\left \right $	\rightarrow	+	+	+	+	+	+	+	+			$\left \right $	-+	+		+	+	\vdash	\vdash	+	+-	+
		+	$\left - \right $	\rightarrow	+		-	$\left - \right $	\rightarrow	+	+	-+	\rightarrow	\rightarrow	+	+	+		\vdash	$\left - \right $	-+	-+		+-	+		\vdash	+	+-	+
Dredging		+	$\left \right $	-+	+	-	-	$\left - \right $	\rightarrow	+	-+	-+	\rightarrow	\rightarrow	-+	+			$\left - \right $	$\left - \right $	-+	-+	_	+-	-		\vdash	_	+-	+
Shipbuilding		-	$\left \right $	\rightarrow	_		-	$\left \right $	\rightarrow	_	-+	-+	\rightarrow	\rightarrow	-+	-	_	_		$\left - \right $	_	_	_	-	-			_	-	+
Sludge disposal		-						\square	$ \downarrow$				\downarrow	\rightarrow	_			_	\square					_	-			_	_	
Sludge processing																														1
Snow-making systems																														
Heavy oil and coal upgrading																														
Swimming pools																		T						Τ						
Solar thermal energy systems			\square					\square		\neg	\uparrow		Ť	Ť	\neg									1	1					\square
Fountains		1		\neg	+				\neg	\neg	\neg	\neg	\neg		\neg	\neg	1	1			\neg	\neg		1	1				1	\square
Keeping in suspension		1		+	+				\rightarrow	+	+	+	+		+	+	+	+			\rightarrow		+	+	1			+	+	+
Thermal oil circulation		+	$\left \right $	+	+		-	+	-+	+	+	+	+	\rightarrow	+	+	+	+	$\left \right $	$\left \right $	+	-+		+	+		\vdash	+	+-	+
		+	$\left - \right $	-+	+	-	-	$\left - \right $	-+	-+	-+	-+	\rightarrow	\rightarrow	-+	-+	+		$\left - \right $	$\left - \right $	-+	-+		+-	+	$\left - \right $			+-	+
Draining of pits, shafts, etc.		+	$\left - \right $	\rightarrow	+	_	-	$\left \right $	-+	-+	-+	-+	\rightarrow	\rightarrow	-+				$\left - \right $	$\left - \right $	-+	-+	_	+		$\left - \right $		_	+-	+
Process engineering			$\left \right $	_			-	$\left \right $	-+	_	_	_	_		-+		_	_	$\left - \right $			_	_					_	+-	+
Heat recovery systems		-					-																	-	-				-	\vdash
Hot-water heating systems																			\square											1
Washing plants																														
Water treatment									T	T	T	T	T	T	T						T	T								
Water extraction																		1												
Water supply													-	1	\uparrow						Ť				1					\square
Sugar industry		1			+			\square	\neg	\neg	+	\neg	\rightarrow	\neg	+	+		1			\neg			1	1				1	\square
Sugar mutatiy			1					1											<u> </u>	<u> </u>					_					

															_															
															Ö															
															tat															
									Ξ.				5	5	Ama-Porter CK Pump Station															
			6	3					AmaDrainer-Box Mini				CK 800 Pump Station	CK 1000 Pump Station	Ę															
			AmaDrainer 4 / 5	s s					õ	ŏ	z	m	Sta.	S	5															
		ň	4 0	Ama-Porter F /					ě	AmaDrainer-Box	Evamatic-Box N	mini-compacta Compacta	9	- 6	ð					F										
		AmaDrainer 3	nei	ter 1		≻		۲	nei	nei	ĕ	a b	E n	Pu	ter				z	Amarex KRT										
		rai	. ai	e ja		MK / MKY		Amaclean	rai	rai	j ji	mini-comp Compacta	- 0	8	ğ			X	Amarex N	Xe										
		aD		ם ה	Rotex	5		lac	aD	aD	Ĕ.	- 2	. 8	9	la-l		4	Amarex	are	are										
		Αŭ	Ψ.	Ā	ß	ž		Αu	Αu	Αu	Š.	ĒŌ	ť	č	Αr	SRL	SRA	Ā	Αu	Αu										
Aquaculture		<u> </u>	<u> </u>										1	1			_		1	<u> </u>										
	sdu	\rightarrow		_		-	Suo					_	-	+					-					$\left \right $				\vdash		—
Spray irrigation	n n	_					ati					_	_	_	_	\vdash						_					_	\vdash	_	
Mining	er b						o st											5										\square		
General irrigation	vat						Ē										+0													
Chemical industry	e <						d a										2	,										1		
Dock facilities	/as						age										4	2										\square		
Drainage	1						1 2 2							1																
Pressure boosting	du				1		, p							1	1		Cubmoreible motor pumpe					1					1			—
Sludge thickening	n l	-			1	1	its				-	+		1	1		- Ū	۲ <u>–</u>				+-					+	\vdash		
Disposal	ge I						2										-					+-					+	\vdash		
Disposal						-	Lifting units / package pump stations										-			\sim		+-	\vdash	$\left - \right $	-+	+	+	\vdash	+	
	rai	-					E.															+-	$\left - \right $	$\left - \right $	-+	_		\vdash	_	——
Descaling units		\rightarrow		_	-	<u> </u>					_	_	-	-	-	\vdash	_	-	-			+	\vdash	$ \square$	_	_		\vdash	-+	—
District heating				_	-	<u> </u>							-	-	_	\square	_		-	\square		_		\square			_	\square		
Solids transport																												\square		
Fire-fighting systems																												Ľ		
Geothermal energy			T								T	Τ																	T	
Drawdown of groundwater levels											\uparrow				1												1		\uparrow	1
Maintenance of groundwater levels		+	+	1	1						+	1			1	\vdash						+			+	+	+	\vdash	+	1
Domestic water supply		+	+	+	+	-				+	+	+	+	+	+	$\left \right $	-		+-			+	\square	$\left \right $	-+	+	+	\vdash	+	
	┤╴┟	\rightarrow		_		-						_	+	+	-	$\left \right $	_		+		_	+-	$\left - \right $	$\left \right $			+			
Flood control / coast protection (stormwater)		\rightarrow		_							_	_	-	-	-	\vdash	_		-		_	_			_	_	_	\vdash	_	<u> </u>
Homogenisation		_		_	_							_		_			_					_					_	\square	_	
Industrial recirculation systems																	_											\square		
Nuclear power stations																														
Boiler feed applications																												(
Boiler recirculation														Γ													Т	\square		
Waste water treatment plants	1 1	Ì			1		1 1							1																
Air-conditioning systems	1				1		1							1								1					1			-
Condensate transport	1	-					1							1								+					+	\vdash		
Cooling circuits	{ }	\rightarrow			-	-							-	+	-	\vdash	-		-			+-					+	\vdash		
	┤┟	-			+	-							-	+	-	$\left \right $	_		-			+-	$\left - \right $	$\left \right $	-+		+	\vdash		+-
Paint shops	┥	\rightarrow		_	-	-						_	+	+			_	-	-			+-	$\left - \right $		\rightarrow	_		\vdash	_	
Food and beverage industry	┥	\rightarrow		_		<u> </u>							-	-			_					_			_		_	\vdash		<u> </u>
Seawater desalination / reverse osmosis		\rightarrow			_									_			_					_					_	\square		
Mixing																	_											\square		
Offshore platforms																														
Pulp and paper industry																														
Petrochemical industry	1 1						1																					\square		
Pharmaceutical industry	1 1				1		1							1	1							1					1			1
Pipelines and tank farms	1				1		1						+	+	-		_					+					+			+-
		+	+	+-	+	-				\square	+	+	+	+	+		-	-	+	\square		+-	\square	$\left \right $	+	+	+	\vdash	+	+
Refineries		\rightarrow	+	-	-	-					+	+	-	-	-	\vdash	-	-	+			+-	\vdash	\vdash	\rightarrow		+	\vdash	+	
Flue gas desulphurisation		\rightarrow	-+		-	-				-+	+	_	+	+	-	\vdash	-	-	+	⊢■		+-	\vdash	$\left - \right $	-+	_		\vdash	+	
Rainwater harvesting		\rightarrow	-+		-	-		_			_	_	-	-	-	\vdash	_	-	+_			+		$\left \right $	-+	_		\vdash	-+	
Cleaning of stormwater tanks / storage sewers		\rightarrow		_	-	<u> </u>						_	-	-	-							-		\square			_	\vdash	\square	
Recirculation		$ \downarrow$											_			\square		-				_		\square			_	\square		
Dredging																												\square		
Shipbuilding						L																								
Sludge disposal																														
Sludge processing		1									\neg				1							1					1		\uparrow	1
Snow-making systems		\dashv	+		1						+			1	1	\vdash			+			1	\square		\neg	\neg	1	(T	+	-
Heavy oil and coal upgrading		+	+	+	+	-				\neg	+		+	+	1	\vdash	_		+			+	\square		\dashv	+	+		+	+
Swimming pools		+	+	-	-					+	+	+	+	-	1	\vdash	-		+	\vdash		+	\square		+	+	+	\vdash	+	+-
		\rightarrow	+	+-	-	-					+	+	-	-	-	\vdash	-	-	+	$\left - \right $		+-	\vdash	$\left - \right $	\rightarrow		+	\vdash	+	
Solar thermal energy systems		\rightarrow	_	-	-	-					+	-	-	-	-	\vdash	_	-	+	$\left - \right $	_		\vdash	$\left - \right $	\rightarrow	_		\vdash	+	
Fountains		+		_	-	-					+	_	-	-	-	\vdash		-	-	\vdash		+	\square	\square	\rightarrow	_		\vdash	+	
Keeping in suspension		\rightarrow	-+	_	-	-					_	_	-	-	-		_	-	-	\square		+	\square	\square	-+			\vdash	+	—
Thermal oil circulation					_	<u> </u>							-	-	_	\square		-	-	\square		\perp		\square			_	\square		
Draining of pits, shafts, etc.																												\square		
Process engineering																												Ш		
Heat recovery systems																												LT		
Hot-water heating systems											T																		T	
Washing plants		1	\neg	1	1						\neg			1	1							1			\neg		1	\square	\uparrow	1
Water treatment										\neg	+			1	1							1	\square		\neg	\neg	1		+	1
Water extraction	4 H				+-	1				\neg	+	+	+	+	1		-				+	+	\square		\dashv	+	+		+	+
Water supply		-		- =	+	-				\square	+	+	+	+	+		-			H		+-	\square	$\left \right $	+	+	+	\vdash	+	+
		\rightarrow	+		-	-				-+	+	+	+	+	-	\vdash	_		+-			+-	\vdash	$\left - \right $	-+	+	+	\vdash	+	
Sugar industry																			_											

				Amacan S		Amamix	Amaprop	Amaline		Sewatec	Sewatec SPN Sewabloc	KWP	KWP-Bloc		WBC	LSA	LCC-M			FGD	MHD	LHD	MDX	ZW	HVF	DWD	TDW		Etaprime L	Etaprime B	EZ B/L	AU	AU Monobloc
Aquaculture Spray irrigation	Submersible pumps in discharge tubes			_	tank cleaning units	+	_	_	for solids-laden fluids	+	_	_	-	Slurry pumps	_		_	_	_	_	_	_	-	_	╞	\vdash	\square	Self-priming pumps			$ \square$		╞
Mining	ge tu		+		n Gu	+		-1	en fl	+	-			nd /														nd 6					
General irrigation	harç				eani	╈		1	lade	\top				Iurn							T	1			\square			nin					Γ
Chemical industry	disc				۲ ۲				-sb 🗌					° ∣														prir					
Dock facilities	i II.								r so																<u> </u>			Self					L
Drainage	d m	\rightarrow	-+	_	agitators /	+		_ ·	s fo	_	_	+			_		_		_	_	_	_	-	-	_	<u> </u>							
Pressure boosting Sludge thickening	nd a		\rightarrow	_	tato			-	Pumps	+		+	-		_			_	_		+	_	-	-	-	\vdash	\square		\mid	\vdash		_	\vdash
Disposal	sible	\rightarrow	+			╉		-	<u>م</u>	+							_	-	-	+	+	-	-	-	+	\vdash			\vdash	\vdash		-	┢
Dewatering	mer				Mixers /	+				+		Ē	_				+		+	+	+		+	\vdash	-		\vdash		Π				
Descaling units	Sub		+		Ξ	+																			1								
District heating																																	
Solids transport				_		Ţ																			L					Г			Ē
Geothermal energy												_	_					_		_	_	_	_		\vdash		\square			\square	\square		⊢
Fire-fighting systems Drawdown of groundwater levels		\rightarrow	\rightarrow	_	-	+		_	-	_	_	_	-		_	_		_	_		+	_	-	-			\square		-	H			
Maintenance of groundwater levels		-+	+	-	-	+	_	-	-	+	_	+-	+		_	_	_	+	_	_	+	_			┢	\vdash					\vdash		
Domestic water supply		\rightarrow	+		-	+				+		+	+					+	-	-	+	-	+	-	+	\square	\square						
Flood control / coast protection (stormwater)			+			╈				+		┢	1						-		╈	-	1	-	1	\vdash						-	F
Homogenisation												T	1								╈												[
Industrial recirculation systems																																	
Nuclear power stations																																	L
Boiler feed applications			+	_	-	+	_	_	-	+	_	-	-		_	_		_	_	_	+	_	-	-	-		\square			\square	H		⊢
Boiler recirculation Waste water treatment plants				-											_			-	_	_	+	_	+	-	-	\vdash	\vdash						
Air-conditioning systems		-	-		-	-						-	+-						+	+	+	-	+	-	+	\vdash	\square					-	F
Condensate transport						╞						┢	1								┢				1	\square	\square						Γ
Cooling circuits																																	Ē
Paint shops																									L								L
Food and beverage industry		-+	_	_	-	+		_	-	+						_	_			_	+	_	-	-	⊢								
Seawater desalination / reverse osmosis Mixing		\rightarrow		-			_	-	-	+			+		_	\rightarrow	+	+	-	+	+	_	+	-	+	+	$\left - \right $		\vdash	$\left - \right $	\vdash	-	⊢
Offshore platforms	-	\rightarrow	+		H	╉	-		-	+		+	-					-	-	-	╈	-	+	-	+	\vdash	\square			\vdash			F
Pulp and paper industry			+			╈				+									+		╈		+	1	\vdash	\square							
Petrochemical industry												1																					Γ
Pharmaceutical industry																																	Ē
Pipelines and tank farms												_													L						\square		L
Refineries		-+	\rightarrow	_	-	+		_	-	+		+_	+_		_		_	_	_		+	_	-	-			\square			-			⊢
Flue gas desulphurisation Rainwater harvesting		-+		_	-	+	_	-	-	+	_				_	_		_	_		-	_	+	-	-		$\left - \right $		$\mid \mid$	$\left - \right $			⊢
Cleaning of stormwater tanks / storage sewers		\rightarrow	-	-	-		_	-	-	+	_	+	+		_	_		-	-	_	+	-	+	+	-	\vdash	$\left - \right $			$\left - \right $			┢
Recirculation			+		Ē	+				+		┼	1								╈		+	-	1	\square							Γ
Dredging												\top					• •																Γ
Shipbuilding																																	
Sludge disposal			\square		-												_				_	_			<u> </u>								L
Sludge processing		-+	\rightarrow	_	-	+		_			_												-							\square			\vdash
Snow-making systems Heavy oil and coal upgrading		\rightarrow	+	_	-	+			-	+					-	-+	+	+	+	+	+	+	+	-	┢	$\left - \right $	$\mid \mid$		\vdash	\vdash	$ \rightarrow$		⊢
Swimming pools		+	+		-	+	+	-	-	+	+	+	╞		\neg	+	+	+	+	+	+	+	+	\vdash	+	\vdash	$\left - \right $				\square		
Solar thermal energy systems			+			╈				+		┢	1			\uparrow	+				╎	1			\square	\vdash			Ē	H		÷	ſ
Fountains																																	Ē
Keeping in suspension																		Ĺ							L	\square	\square		\square	Ц			F
Thermal oil circulation		-	-	_		+	_		-	+	_	+	-		_	-	_	+	+	_	+	-	-	-		\vdash	$\mid \mid$		\vdash	$\mid \mid$			-
Draining of pits, shafts, etc. Process engineering		+	+	_		+	+	_	-	+	_	-			_	-	+	+	+	+	+	+-	+-	-	┢	\vdash	$\mid \mid$		\vdash	$\mid \mid$	\vdash	-	⊢
Heat recovery systems		\rightarrow	+	_		+	+	_	-	+		╎	╞		\neg	+	+	+	+	╞	+	+	+	-	\vdash	⊢	$\left - \right $		\vdash	\vdash	\square	\neg	
Hot-water heating systems		\neg	+			+	+			+		\uparrow	\vdash			+	+	+	+	+	+	+	1	1	\vdash	\vdash				$ \uparrow $	\square		Г
Washing plants																																	Ē
Water treatment															[\vdash	\square	\square		\square	Щ			L
Water extraction																								1	1	1							
Water extraction Water supply		- C		-		-i-				-i-			1					-j-		1				1	\vdash	-							

	-		UPA C 100 EN UPA C 150	UPA 200, UPA 250	UPA 300, UPA 350	UPA 400 - UPA 1100	UPA D	UPA S 200		B Pump	Comeo	Movitec H(S)I	Movitec	Movitec VCI	Multitec		Omega	RDLO	RDLP	Vitachuam	Vitacinolii Vitacart Alitacart Bloc		Vitaprime	Vitastage	Vitalobe	CHTA / CHTC / CHTD	HGB / HGC / HGD	HGI	MGH	YNK	LUV / LUVA	WKTB	
Aquaculture Spray irrigation	nole pumps								Vertical turbine pumps		sdwnd			<u> </u>		Axially split pumps	_	\rightarrow	_	industries	_	+	+	+		Islands	+	┢	-	\vdash	$\left - \right $	$\mid \mid$	╞
Mining	e pu								e pu		e pr					it pu			-	snpu													
General irrigation	ehol								rbin		High-pressure					/ spli		-								station conventional				\Box		\Box	
Chemical industry	iersible bore	+	_	_				_	al tu	_	-pre	_	-			kially			_	beverage and pharmaceutical						ven.	+	-	-	\vdash	\square	\square	-
Dock facilities Drainage	ible	+	_	-	-			\neg	Intice		High-	-	-	-		Â	-	-		naci	_	+	+	+			+-	┢	+	┢─┦	\mid	$\left - \right $	┝
Pressure boosting	ners								~											harr		+	+	+			+	+	+	┝─┦	$\left \right $		-
Sludge thickening	Subm	+											\square						-	d p			╈		- +0	Star	1	1	\square				
Disposal																				le al						power							
Dewatering								_	-			_							_	erag			\downarrow			2	_	_	_			\square	\vdash
Descaling units District heating		+	_		-			_	-	_			-	-					_	pe –	_	+	+	+	v	Pumps tor		+	+	$\left - \right $	$\mid \mid$	$\mid \mid$	-
Solids transport		+	_	+	-	-		-	ŀ	-		+	┢	-			-		-	ð_	-	╈	+	+			+	+	+	$\left - \right $	$\left - \right $	\vdash	-
Fire-fighting systems									ŀ										-	e to		+	╈	+	_ c	۲ <u>–</u>	+	+	+			\vdash	
Geothermal energy																				r F			İ										
Drawdown of groundwater levels																			_`	os to							\perp	\vdash					
Maintenance of groundwater levels Domestic water supply								•	-				-				_	\rightarrow	_	m -	_	+	+	+	_		+	-	-	\square	\square	\square	-
Flood control / coast protection (stormwater)				-	-	-		_	-	-		-	-				_	-	-		-	+	+	+	-	-	+-	+	+	\vdash	\mid	\vdash	-
Homogenisation		╈		-					ŀ			+	\vdash						-	Hygienic pumps for the food,		+	+	+		-	+	+	+			\vdash	
Industrial recirculation systems																				Ē													
Nuclear power stations																																	
Boiler feed applications			_	_	_				-								_			_			\downarrow		_								<u> </u>
Boiler recirculation Waste water treatment plants		+	_	-	-			_	ŀ	-		+	\vdash	-				_	-	-	_	+	+	+	_	-	┢	┢	+	\vdash		$\left - \right $	-
Air-conditioning systems		+		-					ŀ													+	+	+			+	+	+			\square	
Condensate transport													T										1										
Cooling circuits																																	
Paint shops									-	_	_																+	-	-			\square	L
Food and beverage industry Seawater desalination / reverse osmosis		+							-	_	-								_	-						-	+	+-	-	\vdash	\mid	\vdash	-
Mixing		+	-	-	-	-	-	-	ŀ	┥		-	-		-		-	-		F	-	+	+	+			+	+	+	┝┤	$\left - \right $	$\mid \mid$	-
Offshore platforms		+																					↑				1	1	\square				
Pulp and paper industry																																\Box	
Petrochemical industry		_						_	-	_		_	_						_	_	_	_	+		_	_	_	_	<u> </u>			\square	L_
Pharmaceutical industry Pipelines and tank farms		+	_		-			_	-	_			-	-				_	_	-						-	+	+	+	\vdash	$\mid \mid$	$\mid \mid$	-
Refineries		+	-	-	┝	_		_	┝	-		-	┝	-			-	-	-	-	_	+	+	+			+-	+	+	\vdash	H	\vdash	-
Flue gas desulphurisation		╈	-	-	-							+	┢										╈	+			+	+	\vdash		H	\square	
Rainwater harvesting																							Í										
Cleaning of stormwater tanks / storage sewers				_																							1	<u> </u>	_				
Recirculation Dredging		+	_		-			_	-	_			-	-			_	\rightarrow	_	-	_	+	+	+	_	-	+	+	+	$\left - \right $	$\mid \mid$	$\mid \mid$	-
Shipbuilding		+	+	-	\vdash	-	\vdash	\neg	-			+	\vdash	-					-		+	+	+	+	-		+	+	+	\vdash	\vdash	\vdash	-
Sludge disposal																																	
Sludge processing																																	
Snow-making systems																		$ \downarrow$	_		_							-		\square	\square	\square	<u> </u>
Heavy oil and coal upgrading Swimming pools	-	+	_	-	-	_		_	-	_		_	-	-	\square		\rightarrow	-	_	-	_	+	+	+		-	+	\vdash	-	\vdash	\vdash	$\mid \mid$	-
Solar thermal energy systems		+	_	-	-	-		-	ŀ			+	┢	-			-	-	-	-	-	+	+	+	-	-	+	+	+	\vdash		\vdash	-
Fountains									ŀ			+	\vdash									+	╈	+			+	1	\vdash		H		
Keeping in suspension																																	
Thermal oil circulation				-	_		\square						_		\square		$ \downarrow$	_	_		_	_					+	-	-	\square	\square	\square	<u> </u>
Draining of pits, shafts, etc. Process engineering		-	_	-	-	-	\square	_		_		-	-				\dashv	-	_	╞	_	+	+	+	_		\vdash	\vdash	-	\vdash	\vdash	\vdash	-
Heat recovery systems		+		+	-	-	\vdash	\neg	-			-	\vdash				\dashv	+	-		+	+	+	+	-		+	+	+	\vdash	$\left - \right $	\vdash	-
Hot-water heating systems		+		1									\square	1			\dashv	+			+	+	+	+			+	+	+			\square	
Washing plants													-																				
Water treatment		_		+		_													_								\vdash	\vdash	\vdash	\vdash	\square	\square	-
Water extraction								-	-		-		+_	-	-					_	_	_	+	\rightarrow	_[\vdash	┢	-	\vdash	\vdash	\vdash	-
Water supply																																	

plications																																		
																												5	3					
																												BumoDrive 3/BumoDrive 3 Eco	L N D					
		Ŋ																										-						
		SEZ / SEZT / PHZ / PNZ																											1				KSB Leakage Sensor	
		PHZ																										ĺ,	5				Ser	
		Ē	≩									ear								ő						em	2	2	7 U		Þ.	, p	age	,
		SEZ	SNW / PNW	Beveron								LUV Nuclear							õ	Multitec-RO		٢		ĒŪ		KSB SuPremE		ģ	PumpDrive Z	į	PumnMater	KSB Guard	eak	
		EZ /	₹	eve	SΡΥ		RER	RSR	RUV	PSR	RHD	Ξ	RHM	RVM	RHR	RVR	ř		RPH-RO	Iulti		5	EDS	DU / EU		8 8	8			5		5 8	SBL	
A		Š	<u>s</u>	â	S		~	~	~	2	~		~	2	~	2	2		~	_		_					_			_		. ×	×	
Aquaculture Spray irrigation	islands		-	-		power stations				-		-			_		\neg	reverse osmosis	\neg	-	adm_	Eiro fichting cutomo		-	Drives					isoc			┢	+
Mining					_	stat	_								_			osn			t pu		1c fc		Ō					liadr	5			+
General irrigation	iona					wer												erse			men	+												
Chemical industry	vent					r po									_		_	/ rev		_	ace	42:3	<u> </u>		-			2			<u>ע</u> ר			+
Dock facilities Drainage	power station conventional				_	Pumps for nuclear									_		_	n by		_	Positive displacement pumps			-	-		Variable coord curtame			Monitoring and diagnosis	- 2		┼	+
Pressure boosting	tion	_		-		r nu									_			desalination			tive –			\vdash	-					inol		_		+
Sludge thickening	stat					os fo												salin			Posi									- 2 I			t	
Disposal	wer					dun												r des																\Box
Dewatering						а.			$\mid \mid$	-			$\left - \right $				_	s fo	-	_		_	-	-			_				-			+
Descaling units District heating	Pumps for		-	-	\square				\vdash	-	-	-	\square		_		_	Pumps for	+	_		-	⊢	-			-					_	+	+
Solids transport	dun			-			-		\square	-	-							٩	\dashv							-			+	-			+	\vdash
Fire-fighting systems	٩																														E			\square
Geothermal energy													\square						4			_				_	_		\downarrow	_				<u> </u>
Drawdown of groundwater levels Maintenance of groundwater levels			-	-	\square							-	$\left - \right $		_		_		-	_		-	-	-						_			_	+-
Domestic water supply										-					_		-			-		-		\vdash	-		_					_		+
Flood control / coast protection (stormwater)					_		_								_										-						F	+-	┢	+
Homogenisation																																		
Industrial recirculation systems															_		_			_					-			4		<u> </u>				<u> </u>
Nuclear power stations Boiler feed applications															-		-			_	-	_	┢	-	-	_	_	┢	+	_	┝			+-
Boiler recirculation				-	_					_	<u> </u>				-						F	-		-	-			┝	-	-				\vdash
Waste water treatment plants																									-					ī				\vdash
Air-conditioning systems																																		
Condensate transport					_												_	-		_	-	_			-		_			_	-			+
Cooling circuits Paint shops										_					_		_	-	-	-	-	-	┢		-					_	ŀ			\vdash
Food and beverage industry					—										_						-			\vdash			_							+
Seawater desalination / reverse osmosis																																		
Mixing					_										_		_			_					-			4		<u> </u>		_	╞	<u> </u>
Offshore platforms Pulp and paper industry			-							-					_		_		\rightarrow	-	-		┢	-	-		-			_	┢			+
Petrochemical industry															_			ľ						\vdash	-	-		F		-				+
Pharmaceutical industry																														ī				\square
Pipelines and tank farms																																		
Refineries																	_	-		_	-	_			-	_	_			_	-			+
Flue gas desulphurisation Rainwater harvesting										_					_		_	-	-	_	-	-	┢	-	-		-			_	┢		+	+
Cleaning of stormwater tanks / storage sewers					—										_									\vdash	-								┢	+
Recirculation																																		
Dredging																																	\vdash	
Shipbuilding					_										_		_	-		-	4				-		_	┝	+	_	┝			-
Sludge disposal Sludge processing			-	-	\square				\vdash	-	-	-	$\left - \right $				_		+	_		-	┝	-		_	-	┝	+	-	┠		-	+
Snow-making systems					—										_						-			\vdash	-					ī		_	┢	+
Heavy oil and coal upgrading																																		
Swimming pools															_		_			_					-			4		<u> </u>			╞	<u> </u>
Solar thermal energy systems Fountains															_		_	-		_	ŀ		-	-	-					_			-	+
Keeping in suspension															-		-				-	-		-						_	F		┢	\vdash
Thermal oil circulation																									-					_				
Draining of pits, shafts, etc.																																		
Process engineering			-	-						_		-			_		_			_		_	-	-		-	_			_	-			+
Heat recovery systems Hot-water heating systems			-	-	\square				\vdash	-	-	-	$\left - \right $		_		-		+	_		-	-	-			-		_				-	+-
Washing plants			-	-	\square		-		\square	-	-	-			_				\dashv			-	⊢	-			-		_	_		_		+
Water treatment																										-	_							\square
Water extraction					_																	_			-		_			_		_		\vdash
Water supply Sugar industry										-		-	$\left - \right $		_		_		-	_		-	-	-			_			_				+-
Sugar muustry											L	L																	- 1	•			1	<u> </u>

Drive, variable speed system and monitoring

KSB SuPremE

environmentally friendly. Applications For use with dry-installed variable speed pumps which can be driven by standardised foot- mounted and/or flange-mounted motors. https://www.ksb.com/en-gb/lc/SD8C	Number of pumps ≤ 1 Description U [V] Power supply via PumpDrive, PumpDrive R variable IEC-compatible sensorless magnetless synchronous reluctance motor (exception: motor sizes 0.55 kW / 0.75 kW with 1500 rpm are designed with permanent magnets) of efficiency class IE4 / IE5 (super/ultra premium efficiency) to IEC TS 60034-30-2:2016 for operation on a KSB PumpDrive 2, PumpDrive 2 Eco or PumpDrive R variable speed system. Suitable for connection to three-phase 380 - 480 V power supply (via PumpDrive). The motor mounting point comply with EN 50347 specifications to ensure compatibility with standardised IEC frame motor applications and full interchangeability with IE2 or IE3 standardised asynchronous motors. Envelope dimensions lie within the limits for IE2 / IE3 motors as recommended in DIN V 42673 (07-2011). The motor is controlled without rotor position sensors. The efficiency of the motor also exceeds 95 percent of nominal efficiency when the motor runs at 25 percent of its nominal power on a quadratic torque-speed curve. The motor is magnetless which means that so called rare earths are not used in production. Drive production is thus sustainable and
--	---

KSB UMA-S

.141	Number of pumps	≤ 1	Description
	U [V] Other mains voltages on request	5 .00	Permanent-magnet submersible synchronous motor, for operation on a KSB PumpDrive R variable speed system. NEMA connections and identical outside diameters ensure full interchangeability with comparable 6-inch or 8-inch asynchronous motors. The motor is controlled without rotor position sensors. The motor efficiency is 5 - 12 % above that of asynchronous motors. Given the design and functionality the use of permanent magnets is essential. Applications Exclusively for submersible borehole pumps in the range of 4 to 250 kW.
			https://www.ksb.com/en-gb/lc/U02A

PumpDrive 2 / PumpDrive 2 Eco

	Number of pumps P [kW] U [V] Frequency inverter	 Description Modular self-cooling frequency inverter that enables continuously variable speed control of asynchronous and synchronous reluctance motors by means of analog standard signals, a field bus or the control panel. As PumpDrive is self-cooling, it can be mounted on a motor, on the wall or in a control cabinet. Up to six pumps can be controlled without needing an additional controller. Applications Air-conditioning systems, heat generation, heat distribution, water supply systems, water extraction, water treatment, water distribution, water transport, refrigeration, cooling distribution, heat generation, heat distribution, fluid transport, cooling lubricant distribution, industrial water supply, tank drainage, waste water transport
		https://www.ksb.com/en-gb/lc/P10A

PumpDrive R

Number of pumps ≤ 6 P [kW] 55 U [V] 3~380 - 480 Frequency inverter 1 per motor	Modular self-cooling frequency inverter that enables continuously variable speed control of asynchronous and synchronous reluctance motors by means of analog standard signals, a field bus or the control panel. As PumpDrive R is self-cooling, it can be mounted on the wall or in a control cabinet. Up to six pumps can be controlled without needing an additional controller. PumpDrive R extends the power range of PumpDrive 2 up to a rated power of 250 kW (standard) / 1400 kW (on request). Applications Air-conditioning systems, heat generation, heat distribution, water supply systems, water extraction, water treatment, water distribution, water transport, refrigeration, cooling distribution, heat generation, heat distribution, fluid transport, cooling lubricant distribution, industrial water supply, tank drainage, waste water transport
	https://www.ksb.com/en-gb/lc/K01A

PumpMeter

· · · · · · · · · · · · · · · · · · ·	≤ 1 24	Description Device for monitoring the operation of one pump. It is an intelligent pressure transmitter for pumps, with on-site display of measured values and operating data. It records the load profile of the pump in order to indicate any potential for optimising energy efficiency and availability. The device comprises two pressure sensors and a display unit. PumpMeter is supplied completely assembled and parameterised for the pump it is used with. It is ready for operation as soon as the M12 plug connector is plugged in. Applications Air-conditioning systems, cooling circuits, cooling lubricant distribution, heating systems, water treatment plants, water supply systems, water distribution systems, water transport systems, water extraction systems
		https://www.ksb.com/en-gb/lc/P28A

KSB Guard

Sensor units U [V AC]	Description Smart solution for condition monitoring of pumps and other rotating machinery. Sensors on the machinery record measurement data, which is processed in the KSB Cloud. Information on the machinery status can be accessed via mobile phone or computer. Simple retrofitting of the sensor unit for measuring vibrations and temperature during operation of dry-installed pumps and other rotating machinery. Components of the KSB Guard system: sensors, transmission unit and KSB Guard Gateway. For dry-installed pumps the sensors in the sensor unit and the corresponding transmission and battery unit are comprised in the KSB Guard app is required to retrieve operating data. Data from up to 40 pumps can be transmitted via one KSB Guard gateway. Applications Monitoring dry-installed pumps as well as submersible pumps and mixers, optimising and improving system availability
	https://www.ksb.com/en-gb/lc/G01A

KSB Leakage Sensor

S.	Installation type T [°C]	Description The KSB Leakage Sensor is an intelligent monitoring system for measuring and displaying mechanical seal leakage on site. It comprises a leakage measuring instrument and a display unit. Applications Industry (heat transfer fluid market)
KSB Leakage Sensor		https://www.ksb.com/en-gb/lc/L05A

Drinking water circulators, fixed speed

Calio-Therm S NC/NCV

Calio-Therm NC

Rp Q [m³/h] H [m] p [bar] T [°C] n [rpm]	≤7 ≤10	Applications Drinking water supply systems, hot water supply systems and similar systems in industry and building services (e.g. cooling water recirculation)
		https://www.ksb.com/en-gb/lc/C20A

Drinking water circulators, variable speed

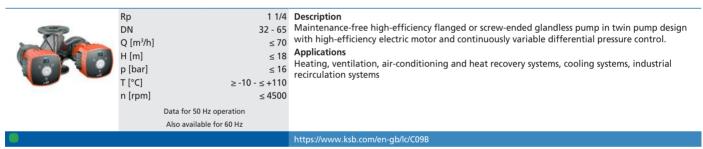
Calio-Therm

Rp DN Q [m³/h] H [m] p [bar] T [°C] n [rpm]	≤ 24 ≤ 12	Maintenance-free high-efficiency variable speed glandless drinking water circulator pump, screw- ended or flanged, electric motor and continuously variable differential pressure control for use in drinking water supply systems and hot water supply systems. Applications Drinking water supply systems, hot water supply systems and similar systems in industry and
		https://www.ksb.com/en-gb/lc/C23A

Calio-Therm S

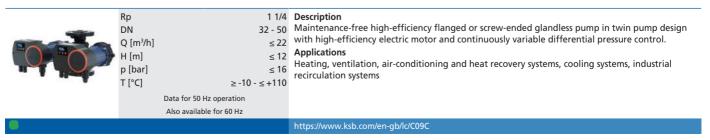
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Rp Q [m³/h] H [m] p [bar] T [°C] ≥ +2 n [rpm] Data for 50 Hz operation Also available for 60 Hz	DescriptionMaintenance-free high-efficiency variable speed glandless drinking water circulator pump, screw- ended, electric motor and continuously variable differential pressure control for use in drinking water supply systems and hot water supply systems.Applications Hot water supply, drinking water circulation systems and similar systems in industry and building services (e.g. cooling water recirculation).
		https://www.ksb.com/en-gb/lc/C91C

Circulators, variable speed


Calio S

Calio

		$\begin{array}{ll} H \ [m] & \leq 18 \\ p \ [bar] & \leq 16 \\ \Gamma \ [^{\circ}C] & \geq -10 - \leq +110 \\ n \ [rpm] & \leq 4500 \\ \end{array}$	Applications Heating, ventilation, air-conditioning and heat recovery systems, cooling systems, industrial recirculation systems
--	--	---	--


Calio Z

Calio Pro

Calio Pro Z

In-line pumps

Etaline

Data for 50 Hz operation Data for 50 Hz operat		$ \begin{array}{llllllllllllllllllllllllllllllllllll$	motor sizes 0.55 kW / 0.75 kW with 1500 rpm are designed with permanent magnets) of efficiency class IE4/IE5 to IEC TS 60034-30-2:2016, for operation on a KSB PumpDrive 2 or KSB PumpDrive 2 Eco variable speed system without rotor position sensors. Motor mounting points in accordance with EN 50347, envelope dimensions in accordance with DIN V 42673 (07-2011). ATEX- compliant version available. Applications Hot water heating, cooling circuits, air-conditioning, water supply systems, service water supply systems, industrial recirculation systems
--	--	---	---

Etaline Z

	DN Q [m³/h] H [m] p [bar] T [°C]	< 1095	shaft are rigidly connected. An M12 module (accessory) enables redundant operation of Etaline Z without the need for a higher-level controller. With KSB SuPremE, a magnetless synchronous
--	--	--------	--

https://www.ksb.com/en-gb/lc/E13B

Etaline-R

DN Q [m³/h] H [m] p [bar] T [°C]	≤ 1900	DescriptionVertical close-coupled pump with volute casing in in-line design with magnet-less KSB SuPremEmotor (exception: motor sizes 0.55 kW / 0.75 kW with 1500 rpm are designed with permanentmagnets) of efficiency class IE4/IE5 and PumpDrive variable speed system.ApplicationsHot water heating, cooling circuits, air-conditioning, water supply systems, service water supplysystems, industrial recirculation systems
		https://www.ksh.com/en-ah/lc/F22A

ILN

	DN	65 - 400	Description
	Q [m³/h] H [m]	≤ 3310 ≤ 112 ≤ 16	dismonthed without removing the nining and the motor. ATEX compliant version available
	p [bar] T [°C]	≤ 16 ≥ -20 - ≤ +70	Applications
	n [rpm]	≥ -20 - ≤ +70 ≤ 3000	Hot-water heating systems, cooling circuits, air-conditioning systems, marine applications, water
	Data for 50	0 Hz operation	
	Also availa	able for 60 Hz	
Control unit			https://www.ksb.com/en-ab/lc/I15A

ILNC

	≤ 370	Hot-water heating systems, cooling circuits, air-conditioning systems, marine applications, water
Control unit		https://www.ksb.com/en-gb/lc/116A

ILNR

DN Q [m³/h] H [m] p [bar] T [°C] n [rpm]	≤ 1600	 Description Vertical volute casing pump in in-line design, single-stage, with closed single-entry impeller. Equipped with replaceable casing wear rings in pump casing and casing cover. ILNR with flexible coupling. Applications Marine applications, cargo tank cleaning, scrubbers, brine circulation, ballast water, bilge water
	Also available for 60 Hz	

Megaline

DN Q [m³/h] H [m] p [bar] T [°C]	≤ 600	closed radial impeller, with multiply curved vanes, single mechanical seal to EN 12756.
		https://www.ksh.com/en-gh/lc/M518

Standardised / close-coupled pumps

Etanorm

https://www.ksb.com/en-gb/lc/E04B		DN Q [m³/h] H [m] p [bar] T [°C]	< 1930	 Description Horizontal volute casing pump, single-stage, with ratings and main dimensions to EN 733, long-coupled, back pull-out design, with replaceable shaft sleeves / shaft protecting sleeves and casing wear rings, with motor-mounted variable speed system. With KSB SuPremE, a magnetless synchronous reluctance motor (exception: motor sizes 0.55 kW / 0.75 kW with 1500 rpm are designed with permanent magnets) of efficiency class IE4/IE5 to IEC TS 60034-30-2:2016, for operation on a KSB PumpDrive 2 or KSB PumpDrive 2 Eco variable speed system without rotor position sensors. Motor mounting points in accordance with EN 50347, envelope dimensions in accordance with DIN V 42673 (07-2011). ATEX-compliant version available. Applications Pumping clean or aggressive liquids not chemically or mechanically aggressive to the pump materials in water supply systems, cooling circuits, swimming pools, fire-fighting systems, irrigation systems, drainage systems, heating systems, air-conditioning systems, spray irrigation systems
-----------------------------------	--	--	--------	--

Etabloc

https://www.ksb.com/en-gb/lc/E01B	Q H p	$\begin{array}{llllllllllllllllllllllllllllllllllll$	Single-stage close-coupled volute casing pump, with ratings to EN 733, with replaceable shaft sleeve and casing wear rings, with motor-mounted variable speed system. With KSB SuPremE, a magnetless synchronous reluctance motor (exception: motor sizes 0.55 kW / 0.75 kW with 1500 rpm are designed with permanent magnets) of efficiency class IE4/IE5 to IEC TS 60034-30-2:2016, for operation on a KSB PumpDrive 2 or KSB PumpDrive 2 Eco variable speed system without rotor position sensors. Motor mounting points in accordance with EN 50347, envelope dimensions in accordance with DIN V 42673 (07-2011). ATEX-compliant version available. Applications Pumping clean or aggressive liquids not chemically or mechanically aggressive to the pump materials in water supply systems, cooling circuits, swimming pools, fire-fighting systems, irrigation systems, drainage systems, heating systems, air-conditioning systems, spray irrigation systems
-----------------------------------	-------------	--	---

Etachrom B

DN Q [m³/h] H [m] p [bar] T [°C]	$25 - 80$ ≤ 260 ≤ 105 ≤ 12 $\geq -30 - \leq +110$ Data for 50 Hz operation Also available for 60 Hz	Horizontal single-stage close-coupled circular casing pump, with ratings and main dimensions to EN 733, with replaceable casing wear rings and motor-mounted variable speed system. With KSB SuPremE, a magnetless synchronous reluctance motor (exception: motor sizes 0.55 kW / 0.75 kW with 1500 rpm are designed with permanent magnets) of efficiency class IE4/IE5 to
		https://www.ksb.com/en-gb/lc/E02A

Etachrom L

SANAR REAL	DN Q [m³/h] H [m] p [bar] T [°C]	≤ 260 ≤ 105 ≤ 12	magnetless synchronous reluctance motor (exception: motor sizes 0.55 kW / 0.75 kW with 1500 rpm are designed with permanent magnets) of efficiency class IE4/IE5 to IEC TS 60034-30-2:2016, for operation on a KSB PumpDrive 2 or KSB PumpDrive 2 Eco variable speed system without rotor position sensors. Motor mounting points in accordance with EN 50347, envelope dimensions in accordance with DIN V 42673 (07-2011). ATEX-compliant version available. Applications Cleaning systems (bottle rinsing, crate washing, etc.), water treatment plants, water supply systems, fire-fighting systems, spray irrigation systems, general irrigation systems, drainage systems, hot-water heating systems, air-conditioning systems, industrial washing plants, general industry, disposal of paint sludge, surface treatment
			https://www.ksb.com/en-gb/lc/E08A

Etanorm V

DN Q [m³/h] H [m] p [bar] T [°C]	≤ 625 < 100	 Description Single-stage volute casing pump for vertical installation in closed tanks under atmospheric pressure, with ratings to EN 733. Applications Phosphating solutions, lubricating oil supply and sealing oil supply for turbines, generators, large compressors, large gear units
		https://www.ksb.com/en-gb/lc/EB5B

Meganorm

DN Q [m³/h] H [m] p [bar] T [°C]	≤ 1160	chamber.
		https://www.ksb.com/en-gb/lc/M52B

Megabloc

DN Q [m³/h] H [m] p [bar] T [°C]	≤ 550 < 140	EN 12756. Applications Water supply systems, irrigation systems, air-conditioning systems, building services systems, hotels, shopping centres, etc., fire-fighting systems, cooling circuits, general industry
		https://www.ksb.com/en-gb/lc/M44B

Hot water pumps

HPK-L

	DN Q [m³/h] H [m] p [bar] T [°C]	- 1100	Description Horizontal radially split volute casing pump in back pull-out design to ISO 2858 / ISO 5199, single stage, single-entry, with radial impeller. Equipped with heat barrier, seal chamber air-cooled by integrated fan impeller, no external cooling. ATEX-compliant version available. Applications Pumping hot water and thermal oil in piping systems or tank systems, particularly in medium- sized and large hot-water heating systems, forced circulation boilers, district heating systems
KSB Leakage Sensor			https://www.ksh.com/en-gh/lc/H07B

НРК

HPH

DN Q [m³/h] H [m] p [bar] T [°C]	≤ 2350 ≤ 225 ≤ 110	Applications
		https://www.ksb.com/en-gb/lc/H01A

Hot water / thermal oil pumps

Etanorm SYT / RSY

	DN Q [m³/h] H [m] p [bar] T [°C]	< 1900	Description Horizontal volute casing pump in back pull-out design, single-stage, with ratings and dimensions to EN 733, radially split volute casing with integrally cast pump feet, replaceable casing wear rings, closed radial impeller with multiply curved vanes, single mechanical seal to EN 12756, double mechanical seal to EN 12756, drive-end bearings: rolling element bearings, pump-end bearings: plain bearings, with magnetless KSB SuPremE motor (exception: motor sizes 0.55 kW / 0.75 kW with 1500 rpm are designed with permanent magnets) of efficiency class IE4/IE5 and PumpDrive variable speed system; ATEX-compliant version available. Applications Heat transfer systems, hot water recirculation
KSB Leakage Sensor			https://www.ksb.com/en-gb/lc/E44B https://www.ksb.com/en-gb/lc/E23A

Etabloc SYT

DN Q [m³/h] H [m] p [bar] T [°C]	≤ 280 ≤ 68 ≤ 16	0.75 kW with 1500 rpm are designed with permanent magnets) of efficiency class IE4/IE5 and PumpDrive variable speed system; ATEX-compliant version available. Applications Heat transfer systems, hot water recirculation
		https://www.ksb.com/en-gb/lc/E10B

Etaline SYT

Standardised chemical pumps

MegaCPK

	P	DN 2 [m³/h] 4 [m] 9 [bar] ⊡ [°C]	≤ 1160 ≤ 162 ≤ 25	 Description Horizontal radially split volute casing pump in back pull-out design, with radial impeller, single-entry, single-stage, to DIN EN ISO 2858 / ISO 5199, in a large range of material and seal variants; also available as a variant with "wet" shaft and conical seal chamber. With KSB SuPremE, a magnetless synchronous reluctance motor (exception: motor sizes 0.55 kW / 0.75 kW with 1500 rpm are designed with permanent magnets) of efficiency class IE4/IE5 to IEC TS 60034-30-2:2016, for operation on a KSB PumpDrive 2 or KSB PumpDrive 2 Eco variable speed system without rotor position sensors. Motor mounting points in accordance with EN 50347, envelope dimensions in accordance with DIN V 42673 (07-2011). ATEX-compliant version available. Applications Pumping aggressive, toxic, explosive, valuable, flammable, malodorous or harmful liquids in the chemical and petrochemical industries, in refineries, power stations and desalination plants as well as in the food industry and general industry. https://www.ksb.com/en-gb/Ic/M48A
--	---	--	-------------------------	---

CPKN

	DN		Description
2	Q [m ³ /h]		Horizontal radially split volute casing pump in back pull-out design, with radial impeller, single-
	H [m]	≤ 185	entry, single-stage, to ISO 2858 / ISO 5199. Also available as a variant with "wet" shaft, conical
	p [bar]	≤ 25	seal chamber and/or semi-open impeller. ATEX-compliant version available.
2 PI	T [°C]	≥ -40 - ≤ +400	Applications Pumping aggressive, toxic, explosive, valuable, flammable, malodorous or harmful liquids in the
		Data for 50 Hz operation	chemical and petrochemical industries, in refineries, power stations and desalination plants as
6-10 C		Also available for 60 Hz	well as in the food industry and general industry.
			https://www.ksb.com/en-gb/lc/C03A

CPKNO

		DN Q [m³/h] H [m] p [bar] T [°C]	< 150	Description Horizontal volute casing pump in back pull-out design, with semi-open impeller, single-stage, to ISO 2858 / ISO 5199. ATEX-compliant version available. Applications Pumping aggressive organic and inorganic fluids, fluids that tend to polymerise, and slightly gas- laden fluids. https://www.ksb.com/en-gb/lc/C28A
--	--	--	-------	--

Seal-less pumps

Magnochem

and the second sec	DN Q [m³/h] H [m] p [bar] T [°C]	version available.
		https://www.ksb.com/en-qb/lc/M00B

Magnochem 685

	DN	25 - 250	Description
	Q [m³/h]		Horizontal seal-less volute casing pump, with magnetic drive, radial impeller, single-entry, single-
A CONTRACTOR	H [m]	≤ 162	stage. Design to ISO 15783 / API 685 (centreline mounting, ASME flanges, and twice the
	p [bar]	≤ 40	permissible nozzle forces). ATEX-compliant version available.
	T [°C]	≥ -90 - ≤ +350	Applications Pumping aggressive, toxic, explosive, valuable, flammable, malodorous or harmful liquids in the
		Data for 50 Hz operation	chemical, petrochemical and general industries.
		Also available for 60 Hz	· · · ·

Magnochem-Bloc

	DN Q [m³/h] H [m] p [bar] T [°C]	< 625	Applications
--	--	-------	--------------

https://www.ksb.com/en-gb/lc/M08B

Etaseco / Etaseco-I


DN Q [m³/h] H [m] p [bar] T [°C]	< 250	canned motor, low noise emission, with radial impeller, single-stage, single-entry, casing connecting dimensions to EN 733, or in in-line design.
		https://www.ksb.com/en-gb/lc/E07A

Etaseco RVP

0	DN Q [m³/h] H [m] p [bar] T [°C]	≤ 44 ≤ 40 ≤ 16	connecting dimensions to EN 733, or in in-line design. Applications Pumping toxic, volatile or valuable liquids in environmental engineering and industrial applications and as coolant pump in cooling systems. Transport vehicles, environmental engineering and industry; applications where low noise emission, smooth running or long service
			intervals are required. https://www.ksb.com/en-gb/lc/ED5A

Process pumps

RPH

RPH-LF

DN Q [m³/h] H [m] T [°C]	Description Horizontal single-entry single-stage radially split overhung centreline-mounted process pump with circular casing to API 610 (ISO 13709), type OH2. Special design for low flow rates. ATEX- compliant version available. Applications Refineries, petrochemical and chemical industries; applications with low flow rates.
	https://www.ksh.com/on-gh/lc/R29A

RPHb / RPHd / RPHbd

S	DN Q [m³/h] H [m] p [bar] T [°C]	≤ 5100 ≤ 550 < 100	Description Heavy-duty horizontal radially split between-bearings volute casing pump to API 610, ISO 13709 (heavy duty), type BB2, with radial impellers, single- or double-entry, single- or two-stage design with centreline pump feet. ATEX-compliant version available. Applications Refineries, petrochemical and chemical industries, offshore and onshore processes.

https://www.ksb.com/en-gb/lc/R23B

RPH-V

	≤ 165 ⊃5	Description Vertical single-stage sump pump to API 610 and ISO 13709 (heavy duty), type VS4, with integral thrust bearing assembly and separate discharge line. ATEX-compliant version available. Applications Refineries, petrochemical and chemical industries, offshore and onshore processes.
		https://www.ksb.com/en-qb/lc/R55A

CTN

	DN	25 - 250 / 250 - 400	Description
11.7	Q [m³/h]	≤ 950	Radially split vertical shaft submersible pump with double volute casing for wet and dry
Pt L	H [m]	≤ 115	installation, with radial impeller, single-entry, single-stage or two-stage; heatable model
T	p [bar]		Applications
	T [°C]	≥ 0 - ≤ +300	Pumping chemically aggressive liquids, also slightly contaminated or with a low solids content, in
		Data for 50 Hz operation	the chemical and petrochemical industries.
-		Also available for 60 Hz	
			https://www.ksb.com/en-gb/lc/C02A

CHTR

CHTRa

Contraction of the	DN Q [m³/h] H [m] p [bar] T [°C] n [rpm]	≤ 1200 ≤ 1550 ≤ 155 ≥ -40 - ≤ +205	optionally available in double-entry design for low NPSH requirements. ATEX-compliant version available. Applications Refineries, petrochemical industry, pipelines for crude oil and refinery products, water injection, feed water transport in power stations and industrial plants, mining, seawater desalination,
		Data for 50 Hz operation Also available for 60 Hz	feed water transport in power stations and industrial plants, mining, seawater desalination, reverse osmosis.
			https://www.ksb.com/en-gb/lc/C18A

CINCP / CINCN

DN Q $[m^3/h]$ H $[m]$ p $[bar]$ T $[^{\circ}C] \geq \cdot$ n $[rpm]$ Data for 50 Hz operation Also available for 60 H	≤ 780 ≤ 105 ≤ 10 $-10 - \leq +100$ ≤ 3000 on	pipe (CINCN). ATEX-compliant version available. Applications
		https://www.ksb.com/en-gb/lc/C39A

https://www.ksb.com/en-gb/lc/C40A

INVCP

IJ	DN Q [m³/h] H [m] p [bar] T [°C] n [rpm]	≤ 1600 ≤ 116 ≤ 10	(INVCN). ATEX-compliant version available.
			https://www.ksb.com/en-ab/lc/l22A

Estigia

	DN Q [m³/h] H [m] p [bar] T [°C] n [rpm]	< 1160	specific fluid requirements. Supplied with discharge pipe extending above the cover plate, DN according to nominal flow rate. Sealing by lip seal, single or double cartridge mechanical seal. ATEX-compliant version available.
KSB SuPremE, PumpDrive, Frequency inverter			https://www.ksb.com/en-gb/lc/V20A

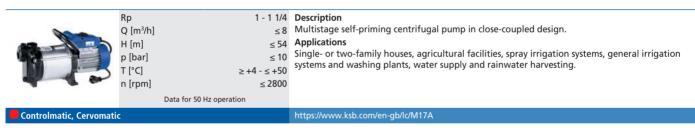
RWCP / RWCN

	DN Q [m³/h] H [m] p [bar] T [°C] n [rpm]	50 - 200 ≤ 700 ≤ 100 ≥ -10 - ≤ +100 ≤ 3000 Data for 50 Hz operation Also available for 60 Hz	sealed by mechanical seal or gland packing in accordance with various API piping plans. Oil- lubricated bearings. ATEX-compliant version available. Applications Refineries, chemical and petrochemical industries, steel works, descaling units, raw materials
NKTR	24		
1	DN Q [m³/h] H [m] p [bar]	40 - 150 ≤ 400 ≤ 500	Vertically suspended, double-casing, lineshaft, diffuser-type pump with integral thrust bearings

https://www.ksb.com/en-gb/lc/W18A

Rainwater harvesting systems

Hya-Rain / Hya-Rain N


Rp Q [m ³ /h] :: H [m] ≤ p [bar] :: T [°C] ≥ 0 - ≤ + Data for 50 Hz operation	 Description Ready-to-connect package rainwater harvesting system in protective housing with automatic mains water back-up function if the rainwater storage tank is empty, with integrated dry running protection and demand-driven automatic pump control. Hya-Rain N version with analog level measurement in rainwater storage tank and integrated functional check run. Applications Rainwater harvesting and service water harvesting, general irrigation and spray irrigation
	https://www.ksb.com/en-gb/lc/H12A

Hya-Rain Eco

Rp Q [m³/h] H [m] p [bar] T [°C]	1 ≤ 4 ≤ 43 ≤ 6 ≥ 0 - ≤ +35 Data for 50 Hz operation	demand-driven automatic pump control.
		https://www.ksb.com/en-gb/lc/H12A

Domestic water supply / swimming pool pumps

Multi Eco

Multi Eco-Pro

Rp Q [m³/h] H [m] p [bar] T [°C] n [rpm]	≤ 54 ≤ 10	Multistage self-priming centrifugal pump in close-coupled design, with power cable, plug and Controlmatic E automatic control unit starting and stopping the pump in line with consumer demand and protecting it against dry running. Automated with automatic control unit.
		https://www.ksb.com/en-gb/lc/M18A

Multi Eco-Top

Rp Q [m ³ /h] H [m] p [bar] T [°C] n [rpm]	≤ 8 ≤ 54 ≤ 10	Multistage self-priming centrifugal pump in close-coupled design incl. accumulator with replaceable membrane in drinking water quality, total volume 20 or 50 litres, pressure switch for automatic pump operation and 1.5-metre power cable with plug.
		https://www.ksb.com/en-gb/lc/M19A

Ixo N

n [rpm] ≤ 2900 Data for 50 Hz operation S0 H

Ixo-Pro

Rp Q [m³/h] H [m] T [°C]	< 60	Description Multistage submersible borehole pump with integrated pressure switch, flow sensor and lift check valve. Electronic dry running protection with four consecutive start-up attempts; integrated capacitor. 15-metre H07 RN-F power cable with shockproof plug included. Applications Rainwater harvesting, pressure boosting, water extraction, irrigation systems
		https://www.ksb.com/en-gb/lc/I06A

Filtra N

	Rp		Description
	Q [m ³ /h]	≤ 36	Single-stage self-priming centrifugal pump in close-coupled design.
	H [m]	≤ 21	Applications
	p [bar]	≤ 2,5	Pumping clean or slightly contaminated water, swimming pool water with a max. chlorine content of 0.3 %; ozonised swimming pool water with a max. salt content of 7 ‰.
	T [°C]	≥ +4 - ≤ +35	content of 0.3 %; ozonised swimming pool water with a max. salt content of 7 ‰.
	n [rpm]	≤ 2800	
		Data for 50 Hz operation	
			https://www.ksb.com/en-gb/lc/F00A

Pressure booster systems

KSB Delta Macro

Rp Q [m³/h] H [m] p [bar] T [°C]	< 960	Description Fully automatic package pressure booster system with two to four (F) / six (VC/SVP) vertical high- pressure pumps; available in cascade-controlled and two variable speed designs. Cascade control (F) for ensuring the required supply pressure. The VC and SVP versions ensure variable speed control of each pump by cabinet-mounted frequency inverter (VC) or motor-mounted PumpDrive variable speed system and KSB SuPremE motor (SVP), respectively, providing fully electronic control to ensure the required supply pressure. Automated with BoosterCommand Pro (+). Applications Pressure boosting in residential buildings, hospitals, office buildings, hotels, department stores, industry, etc.
		https://www.ksb.com/en-gb/lc/D12A

KSB Delta Solo/Basic Compact

		Rp		Description
(m)		Q [m³/h]	≤ 18	Fully automatic ready-to-connect package single-pump pressure booster system / dual-pump
	<u> </u>	H [m]		pressure booster system with variable speed system
a the	- PER	p [bar]	≤ 10	
et insta	and the	T [°C]	≥ 0 - ≤ +40	Domestic water supply, water supply systems, spray irrigation systems, general irrigation systems, service water systems, rainwater harvesting
			Data for 50 Hz operation	service water systems, rainwater narvesting

https://www.ksb.com/en-gb/lc/D05B

Pumps

Rp		Description Fully automatic pressure booster system with two to three (MVP) / four (SVP) vertical high-
Q [m³/h] H [m] p [bar] T [°C]	≤ 134 ≤ 16 ≥ 0 - ≤ +60	pressure pumps in two variable speed versions. The MVP and SVP variable speed versions ensure variable speed control of each pump by motor-mounted frequency inverter for asynchronous motors (MVP) or by PumpDrive variable speed system and KSB SuPremE motor (SVP), respectively.
	Data for 50 Hz operation	Applications Pressure boosting in residential buildings, hospitals, office buildings, hotels, department stores, industry, etc.
		https://www.ksb.com/en-gb/lc/D07A

KSB Delta Primo

Rp Q [m³/h] H [m] p [bar] T [°C]	< 124	Fully automatic package pressure booster system with two to three (VC) / four (F/SVP) vertical high-pressure pumps; available in cascade-controlled and two variable speed designs. Cascade control (F) for ensuring the required supply pressure. The VC and SVP versions ensure variable speed control of each pump by cabinet-mounted frequency inverter (VC) or motor-mounted
		https://www.ksb.com/en-gb/lc/D08A

KSB Delta Solo

Rp Q [m³/h] H [m] p [bar] T [°C]	145	Fully automatic single-pump system available in two variable speed versions. The MVP and SVP variable speed versions ensure variable speed control of each pump by motor-mounted frequency inverter for asynchronous motors (MVP) or by PumpDrive variable speed system and KSB SuPremE motor (SVP), respectively, providing fully electronic control to ensure the required supply
		https://www.ksb.com/en-ab/lc/D11A

Hya-Solo D

Rp DN Q [m³/h] H [m] p [bar] T [°C]	< 110	rainwater harvesting and service water supply systems in trade and industry.
		https://www.ksb.com/en-gb/lc/H17A

Hya-Solo D FL

E	Rp DN Q [m³/h] H [m] p [bar] T [°C]	≤ 110	Description Fully automatic package single-pump system. The system is started and stopped as a function of pressure. Design and function as per DIN 14462. Applications Fire-fighting systems to DIN 14462
			https://www.ksb.com/en-gb/lc/H16A

D		n	2	_	~
г	u		ч	μ	S

Hya-Duo D FL

Hya-Solo D FL Compact

DN Q [m³/h] H [m] p [bar] T [°C] D	< 48	Description Fully automatic ready-to-connect break tank package booster set for fire fighting, comprising a single-pump system and break tank. The system is started and stopped as a function of pressure. Design and function as per DIN 14462. Applications Fire-fighting systems to DIN 14462
		https://www.ksb.com/en-gb/lc/H45A

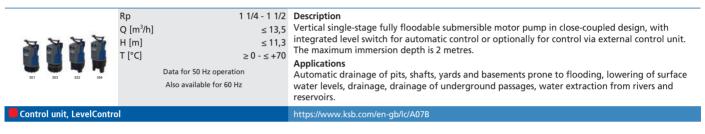
Hya-Duo D FL Compact

DN Q [m³/h] H [m] p [bar] T [°C]	< 48	Applications
		https://www.ksb.com/en-gb/lc/H46A

Hya-Duo D FL-R

DN Q [m³/h] H [m] p [bar] T [°C]	≤ 210 ≤ 160	Fully automatic package single-pump system. The system is started and stopped as a function of pressure. Design and function as per DIN 14462.
		https://www.ksb.com/en-gb/lc/H26A

Surpress Feu SFE


Rp Q [m³/h] H [m] p [bar] T [°C]	≤ 40	Description Fully automatic pressure booster system with two horizontal close-coupled pumps (one pump on stand-by duty). Design complies with APSAD regulation R5. Pressure-controlled starting and stopping. Automated with BoosterControl. Applications Water supply and pressure boosting for wall hydrants, fire protection.
		https://www.ksb.com/en-gb/lc/SC3A

Safety Boost

DN Q [m³/h] H [m] p [bar] T [°C]	<7	Troughs rainwater harvesting systems car washes supply lines in waste water treatment plants
		https://www.ksb.com/en-ab/lc/SA2A

Drainage pumps / waste water pumps

AmaDrainer 3

AmaDrainer 4 / 5

	Rp Q [m³/h] H [m] T [°C]	< 50	 Description Vertical single-stage fully floodable submersible motor pump in close-coupled design, IP68, with or without level control, max. immersion depth: 7 m. Applications Automatic drainage of pits, shafts, yards and cellars at risk of flooding, lowering of surface water levels, drainage, drainage of underground passages, water extraction from rivers and reservoirs.
--	-----------------------------------	------	---

Control unit, LevelControl

https://www.ksb.com/en-gb/lc/A76A

AmaDrainer 80/100

	Rp DN Q [m³/h] H [m] T [°C]	100 ≤ 130	or without level control, max. immersion depth: 10 m. Applications Automatic drainage of pits, shafts, yards and cellars at risk of flooding, lowering of surface water levels, drainage, drainage of underground passages, water extraction from rivers and reservoirs.
Control unit, LevelContro	0		https://www.ksb.com/en-gb/lc/A76A

Ama-Porter F / S

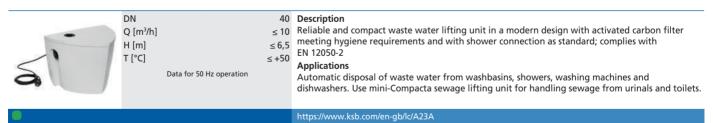
	DN Q [m³/h] H [m] T [°C]	< <	≤ 40 ≤ 16 +40	Description Vertical single-stage fully floodable submersible waste water pump in close-coupled design (grey cast iron variant), non-explosion-proof. Applications Handling waste water, especially waste water containing long fibres and solid substances, liquids containing gas/air, removing waste water from flooded rooms and surfaces.
Control unit, LevelContro	bl			https://www.ksb.com/en-gb/lc/A10A

Ρ	u	m	۱ĸ	S
-			· r	

Rotex

O [m³/h] ≤ 24	Applications
	https://www.ksb.com/en-gb/lc/R04A

MK / MKY


		$ \begin{array}{llllllllllllllllllllllllllllllllllll$	primary and secondary heating circuits, for direct installation in heating tanks or heat exchangers in the secondary circuits of heat transfer systems (MKY).
Control uni	Control unit, LevelControl		https://www.ksb.com/en-gb/lc/M02A

Lifting units / package pump stations

Amaclean

Ø [mm] DN Installation depth [m]	50 - 100	DescriptionSelf-cleaning tank insert for grouted installation in new concrete structures or in concretestructures in need of refurbishment. Designed to prevent soiling of the structure and clogging ofthe pumps by heavily waste or fibre loaded waste water. Suitable for pump stations emittingunpleasant odours and/or gases.ApplicationsWaste water disposal, rainwater disposal
		https://www.ksb.com/en-gb/lc/A15A

AmaDrainer-Box Mini

AmaDrainer-Box

30 23 M	DN Q [m³/h] H [m] T [°C]	:	≤ 46 ≤ 24 ≤ +40	Description Stable above-floor plastic collecting tank or impact-resistant underfloor plastic collecting tank, with floor drain and odour trap, both with AmaDrainer submersible motor pump starting and stopping automatically and swing check valve Applications Automatic disposal of waste water from washbasins, showers, washing machines, garage driveways, basements and rooms prone to flooding
				https://www.ksb.com/en-gb/lc/A23A

	DN Q [m³/h] H [m] T [°C]	Data for 50 Hz operation	Applications
			https://www.ksb.com/en-gb/lc/EB7A

mini-Compacta

KSB D.	DN Q [m³/h] H [m] T [°C]	Data for 50 Hz operation Also available for 60 Hz	< 36	Description Floodable single-pump sewage lifting unit or dual-pump sewage lifting unit for automatic disposal of domestic waste water and faeces in building sections below the flood level. Applications Basement flats, bars, basement party rooms, basement saunas, cinemas, theatres, department stores, hospitals, hotels, restaurants, schools.
				https://www.ksb.com/en-gb/lc/M09B

Compacta

	DN	80 - 100	Description
A	Q [m³/h]	≤ 145	Floodable single-pump sewage lifting unit or dual-pump sewage lifting unit for automatic
	H [m]	≤ 24,5	disposal of waste water and faeces in buildings and building sections below the flood level.
and the second second	T [°C]	≤ +40	Applications
		Data for 50 Hz operation	Basement flats, bars, basement party rooms and saunas, cinemas and theatres, department stores and hospitals, hotels, restaurants, schools, other public buildings, industrial facilities,
			underground train stations or for joint sewage disposal from rows of houses.
			https://www.ksb.com/en-gb/lc/C00B

CK 800 Pump Station

DN Q [m³/h] H [m] T [°C] Data for 50 Hz operation	≤ 22 < 49	Description Single-pump station / dual-pump station as ready-to-connect package system, with PE-LLD (polyethylene) collecting tank for buried installation. Equipped with either one or two submersible waste water pumps of type Amarex N S (explosion-proof or non-explosion-proof) or Ama-Porter (non-explosion-proof). Tank design to DIN 1986-100 and EN 752/EN 476. Applications Drainage of buildings and premises, waste water disposal, premises renovation, joint sewage disposal for multiple residential units, pumped drainage
		https://www.ksb.com/en-gb/lc/C05A

CK 1000 Pump Station

DN Q [m³/h] H [m] T [°C] Data	≤ 40,3 - 27 2	Description Single-pump station / dual-pump station as ready-to-connect package system, with PE-LLD (polyethylene) collecting tank for buried installation. Equipped with either one or two submersible waste water pumps of type Amarex (explosion-proof or non-explosion-proof) or Ama-Porter (non-explosion-proof). Tank design to DIN 1986-100 and EN 752/EN 476. Applications Drainage of buildings and premises, waste water disposal, premises renovation, joint sewage disposal for multiple residential units, pumped drainage
		https://www.ksb.com/en-gb/lc/C05A

Ama-Porter CK Pump Station

DN Q [m ³ /h] H [m] T [°C] Data for 50 Hz operation	≤ 40 < 16	DIN 1986-100 and EN 752/EN 476. Applications Drainage of buildings and premises, waste water disposal, premises renovation, joint sewage disposal for multiple residential units, pumped drainage
		https://www.ksb.com/en-gb/lc/C05A

SRL

H [m] T [°C] Bata for 50 Hz operation → +40 Applications Joint disposal water treatment	l of domestic, municipal and industrial waste water to the sewer system / waste
---	---

SRA

	DN Q [m³/h] H [m] T [°C]	≤ 200 < 75	Description Dual-pump station as ready-to-connect package system, with fibreglass collecting tank for buried installation Applications Site remediation, disposal of domestic, municipal and industrial waste water, joint sewage disposal for multiple residential units
Amacontrol, LevelCon	trol		https://www.ksb.com/en-gb/lc/S90A

Submersible motor pumps

Amarex

	DN Q [m³/h] H [m] T [°C]	≤ 320	Description Vertical single-stage submersible motor pump for wet installation, with free-flow impeller (F-max) or open dual-vane impeller (D-max), stationary or transportable version. Single-stage, single-entry close-coupled pump sets which are not self-priming. ATEX-compliant version available. Applications Waste water transport, waste water management, drainage systems, waste water treatment plants, stormwater transport, recirculation, sludge treatment
Control unit, LevelContro	ol 👘		https://www.ksb.com/en-gb/lc/A31B

Amarex N

	DN Q [m³/h] H [m] T [°C]	≤ 190	Description Vertical single-stage submersible motor pump for wet installation, with cutter (S), stationary or transportable version. Amarex N pumps are floodable, single-stage, single-entry close-coupled pump sets which are not self-priming. ATEX-compliant version available. Applications Pumping waste water, especially untreated waste water containing long fibres and solid substances, liquids containing gas or air, and raw, activated and digested sludge; dewatering and water extraction, drainage of rooms and areas at risk of flooding.
Control unit, LevelContro			https://www.ksb.com/en-gb/lc/A31A

Amarex KRT

	DN Q [m³/h] H [m] T [°C] n [rpm] Data for 50 Hz operation Also available for 60 Hz	≤ 10080	next-generation impeller types, for wet or dry installation, stationary or transportable version, with energy-saving motor and models for use in potentially explosive atmospheres.
PumpDrive, Amacontrol	LevelControl		https://www.ksb.com/en-ab/lc/A30B

Submersible pumps in discharge tubes

Amacan K

e	DN	700 - 1400	Description
	Q [m³/h]		Wet-installed submersible motor pump for installation in discharge tubes, with channel impeller,
	H [m]	≤ 30	single-stage, single-entry. ATEX-compliant version available.
	т [°С]	≥ 0 - ≤ +40	Applications
	n [rpm]	≤ 980	Handling pro cleaned chemically poutral waster water industrial offluent and sowage, fluids not
	ii [i piii]	3000	containing any stringy substances, pre-treated by screens or overflow sills; as waste water,
		Data for 50 Hz operation	combined sewage and activated sludge pumps in waste water treatment plants, irrigation and
The second second second second second second second second second second second second second second second s		Also available for 60 Hz	drainage pumping stations.
Amacontrol			https://www.ksb.com/en-gb/lc/A05A

Amacan P

	DN Q [m³/h] H [m] T [°C] n [rpm]	≤ 25200 ≤ 12 > 0 - < +40	Applications
Amacontrol			https://www.ksb.com/en-gb/lc/A28A

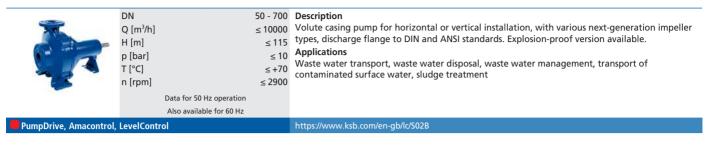
Pumps			
Amacan 5			
¥P.	DN	650 - 1300	•
<u>A</u>	Q [m³/h]	≤ 10800	Wet-installed submersible motor pump for installation in discharge tubes, with mixed flow
1	H [m]	≤ 40	impeller, single-stage. ATEX-compliant version available.
	T [°C]	≥ 0 - ≤ +40	Applications
	n [rpm]	≤ 1450	Pumping water not containing stringy material in irrigation and drainage pumping stations, general water supply systems, water pollution control and flood control.
		Data for 50 Hz operation	
		Also available for 60 Hz	
Amacontrol			https://www.ksb.com/en-gb/lc/A29A

Mixers / agitators / tank cleaning units

Amamix

Sept.	Propeller Ø [mm] T [°C] Installation depth [m] Data for 50 Hz ope Also available for	$\geq 0 - \leq +40$ ≤ 30	Description Horizontal submersible mixer with self-cleaning ECB propeller, close-coupled design, direct drive. ATEX-compliant version available. Applications Handling municipal and industrial waste water and sludges as well as applications in environmental engineering.
Amacontrol			https://www.ksb.com/en-gb/lc/A09A

Amaprop


R	T[°C] >0-	≤ +40 ≤ 12	Description Horizontal submersible mixer with self-cleaning ECB propeller, close-coupled design, with coaxial spur gear drive. ATEX-compliant version available. Applications In environmental engineering, particularly in municipal and industrial waste water and sludge treatment, for circulating, keeping in suspension and inducing flow in nitrification tanks and denitrification tanks, activated sludge tanks, biological phosphate elimination tanks, flocculation tanks and sludge storage tanks
Amacontrol			https://www.ksb.com/en-gb/lc/A11A

Amaline

(F)	\sim	DN Q [m³/h] H [m] T [°C] n [rpm]	≤ 6600	nine Explosion-proof version available
Amacontr	(al			https://www.ksh.com/en-ah/lc/A08B

Pumps for solids-laden fluids

Sewatec

Sewatec SPN

		≤ 32400 < 115	Description Vertical volute casing pump with multi-channel impellers (K), discharge flange to DIN and ANSI standards. Applications Waste water transport, waste water disposal, waste water management, transport of contaminated surface water
--	--	------------------	--

Sewabloc

	DN Q [m³/h] H [m] p [bar] T [°C] n [rpm] Data for 50 Hz operation Also available for 60 Hz	≤ 1000 ≤ 90 < 10	available. Applications Waste water transport, waste water disposal, waste water management, transport of
PumpDrive, LevelControl			https://www.ksb.com/en-gb/lc/S01B

PumpDrive, LevelControl

KWP

0	DN Q [m³/h] H [m] p [bar] T [°C] n [rpm]	≤ 15000 ≤ 100 ≤ 10	Applications Paper industry, cellulose industry, sugar industry, food industry, power plants, chemical industry,
PumpDrive			https://www.ksb.com/en-gb/lc/K07A

KWP-Bloc

	DN Q [m ³ /h] H [m] p [bar] T [°C] n [rpm]	≤ 325 ≤ 100 ≤ 10	 Description Horizontal or vertical radially split close-coupled volute casing pump, single-stage, single-entry, available with various impeller types: closed multi-channel impeller, open multi-vane impeller and free-flow impeller. Applications Paper industry, cellulose industry, sugar industry, food industry, chemical industry, petrochemical industry, flue gas desulphurisation, industrial engineering, waste water transport
PumpDrive			https://www.ksb.com/en-gb/lc/K09A

WBC

Q [m³/h] H [m] p [bar] T [°C]	≤ 80	Description Patented design with state-of-the-art hydraulic system and highly wear-resistant materials for high-pressure applications. The pump casing is designed to withstand maximum stresses, e.g. during pressure surges. Applications Ideal for the single-stage or multistage transport of ore and tailings over long distances and for dredging.
		https://www.ksb.com/en-ab/lc/W09A

LSA

	Q [m³/h] H [m]	Description Premium design white cast iron pump for long service life handling severe slurries. The
	p [bar] T [°C]	 maintenance-friendly single-wall construction and heavy section white cast iron wet end combined with the cartridge bearing assembly provide maximum reliability, a long service life and ease of maintenance.
		Applications Ore and tailings transport, cyclone feed, dredging (dry-installed or submerged operation) and industrial processes.
		https://www.ksb.com/en-gb/lc/L14A

LCC-M

	H [m] p [bar]	≤ 90	Applications
--	------------------	------	--------------

https://www.ksb.com/en-gb/lc/L13A

LCC-R

Q [m ³		Description
H [m]		Interchangeable rubber-lined or part-metal design allows adaptation of existing pumps to new
p [bai	ii] <u> </u>	applications by simply exchanging the pump wet end.
] ≤+65	Applications The pumps are suitable for moderate heads, fine particles and highly corrosive slurries.

https://www.ksb.com/en-gb/lc/L19A

TBC

Q [m³/h] H [m] p [bar] T [°C]	≤ 90 < 45	DescriptionHorizontal high-pressure end-suction centrifugal pump offering maximum resistance to wear and ease of maintenance. The conventional single-wall design transfers stress loads from the wear parts to the casing covers in high-pressure applications. Pump components made of highly wear- resistant white cast iron.Applications High-head high-flow hydrotransport of mined ore, tailings, dredged material, for pipeline booster stations and other severe duties.
		https://www.ksb.com/en-gb/lc/T08A

LCV

	Ţ	Q [m³/h] H [m] p [bar] T [°C]	≤ 38 < 11	Description Rugged vertical shaft submersible pump with casing, impeller and suction plate / liner made of white cast iron, bearing assembly located outside the fluid handled. Replaceable wetted parts made of white cast iron or natural rubber. Applications Particularly suitable for use in industrial processes and for transporting tailings in mines and pits.
--	---	--	--------------	--

FGD

Q [m³/h] H [m] p [bar] T [°C]	≤ 30	Flue gas desulpurisation systems and process circuits
		https://www.ksb.com/en-gb/lc/F01A

MHD

Q [m³/h] H [m] p [bar] T [°C]	≤ 115	DescriptionHorizontal volute casing pump for high-volume hydrotransport of solids. For pumping slurries of large and very large particle sizes with a very good suction behaviour and high efficiency. Pump components made of white cast iron.Applications ldeal for pipeline pressure booster stations and severe mining duties. Highly suitable for loading and unloading duties on (cutter) suction dredgers.
		https://www.ksb.com/en-ab/lc/M35A

LHD

Q [m³/h] H [m] p [bar] T [°C]	≤ 105	Description Horizontal volute casing pump for high-volume hydrotransport of solids. For pumping slurries of large and very large particle sizes with a very good suction behaviour and high efficiency. Used in low-pressure applications. Pump components made of white cast iron. Applications Ideal for handling sand and gravel, on dredgers for land reclamation and as booster pumps.
		https://www.ksb.com/en-gb/lc/L12A

MDX

Q [m³/h] H [m] p [bar] T [°C]	 Description Pump designed with the latest technology from GIW. Superior wear properties and extremely long service life handling aggressive slurries. Applications Designed for SAG and ball mill discharge duties, cyclone feed, screen feed and other ore mining and treatment processes.
	https://www.ksb.com/en-gb/lc/M42A

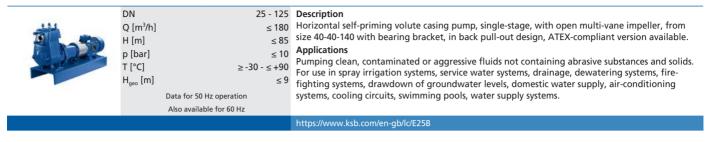
ZW

Q [m ³ /h] H [m] p [bar] T [°C] ≥0	≤ 35 ≤ 10	Description Rugged vertical shaft submersible pump with casing, impeller and suction cover made of white cast iron, top and bottom impeller inlet. Long-life bearings not exposed to fluid handled. Replaceable wetted components. Applications Particularly suitable for pumping abrasive slurries, dewatering, floor clean-up and process applications.
--	--------------	---

HVF

Q [m³/h] H [m] p [bar] T [°C]	≤ 50 < 11	Description The pump provides continuous operation without shutdown or operator intervention. The new hydraulic design removes air from the impeller eye while the pump is running, and the pump can be retrofitted into any existing operation. Applications For use in all froth pumping applications in the mineral processing and industrial minerals industries.
		https://www.ksh.com/ep-gh/lc/HAAA

DWD


Q [m³/h] H [m] p [bar] T [°C]	< 90	the internal wear parts handle abrasive slurries, the outer casing acts as the high pressure containment component for safety. Designed primarily for use in ocean going vessels, the DWD dredge pump is a robust design, built to withstand the world's most aggressive dredge applications. Applications Inboard and underwater pumps for cutter suction dredges (CSD) and trailing suction hopper dredges (TSHD).
		https://www.ksb.com/en-gb/lc/D06A

TDW

Q [m³/h] H [m] p [bar] T [°C]	< 105	Description High head, low suction head pump specifically engineered for operation in tailings pond dewatering applications. This pump offers a fully integrated expeller shaft seal for flush-free operation. The balanced, 4-vane, large free passage impeller helps to minimise vibration. A robust mechanic end ensures reliable operation in a wide range of operating conditions. The wet-end wear components including the high speed capable impeller are made of high chrome cast white iron for maximum wear life and long production cycles. Applications Developed to meet the unique requirements of tailings pond dewatering services where seal flush water is not available. Ideal for water reclamation service where solids are present and high head is required.
		https://www.ksb.com/en-gb/lc/T07A

Self-priming pumps

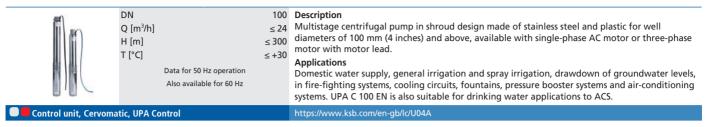
Etaprime L

Etaprime B

	≤ 130 ≤ 70 < 10	Applications Pumping clean, contaminated or aggressive fluids not containing abrasive substances and solids. For use in spray irrigation systems, service water systems, drainage, dewatering systems, fire-
		https://www.ksh.com/on-ah/lc/EB1B

EZ B/L

AU


DN Q [m³/h] H [m] p [bar] T [°C]	≤ 600 ≤ 52 < 10	Pumping clean contaminated and aggressive fluids also containing solids. In fresh water and
		https://www.ksh.com/en.ah/lc/A93A

AU Monobloc

DN Q [m³/h] H [m] p [bar] T [°C]	< 53	Applications
		https://www.ksb.com/en-gb/lc/A94A

Submersible borehole pumps

UPA C 100 EN

UPA C 100 EE

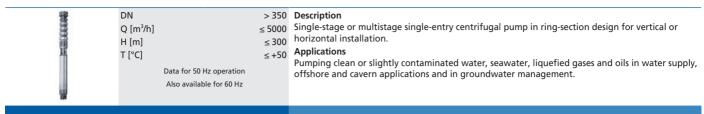
	DN Q [m ³ /h] H [m] T [°C] Data for 50 Hz operation Also available for 60 Hz	100 ≤ 18 ≤ 600 ≤ +30	Description Multistage centrifugal pump in ring-section design made of stainless steel for well diameters of 100 mm (4 inches) and above, available with single-phase AC motor or three-phase motor with motor lead. Applications Domestic water supply, general irrigation and spray irrigation, drawdown of groundwater levels, in fire-fighting systems, cooling circuits, fountains, pressure booster systems and air-conditioning systems. UPA C 100 EE is also suitable for drinking water applications to ACS.
Control unit, Cervomatic, UPA Control			https://www.ksb.com/en-gb/lc/U04A

UPA C 150

	DN Q [m³/h] H [m] T [°C] Data for 50 Hz operation Also available for 60 Hz	< 79	All-stainless steel single-stage or multistage centrifugal pump in ring-section design, suitable for vertical or horizontal installation, for well diameters of 150 mm (6 inches) and above.
--	---	------	--

PumpDrive, KSB UMA-S

https://www.ksb.com/en-gb/lc/U16A


UPA 200, UPA 250

with	DN	200 - 250	Description
	Q [m³/h]	≤ 330	Single-stage or multistage single-entry centrifugal pump in ring-section design for vertical or
	H [m]	≤ 460	horizontal installation. Optionally available with lift check valve or connection branch. For well
	T [°C]	≤ +50	diameters of 8 inches and above.
1	Data fo	or 50 Hz operation	Applications Pumping clean or slightly contaminated water in general water supply, spray irrigation and
		vailable for 60 Hz	general irrigation, drawdown and maintenance of groundwater levels, fountains and pressure
	A150 U		booster systems, mining, fire-fighting systems, emergency water supply, etc.
PumpDrive, KSB UMA-S			https://www.ksb.com/en-gb/lc/U17A
Fulliputive, KSB OlviA-S			https://www.ksh.com/en-gh/lc/L19A

UPA 300, UPA 350

	DN Q [m³/h] H [m] T [°C]	< 840	available with lift check value or connection branch. For well diameters of 12 inches and above
PumpDrive, KSB UMA-S			https://www.ksb.com/en-gb/lc/U20A https://www.ksb.com/en-gb/lc/U21A

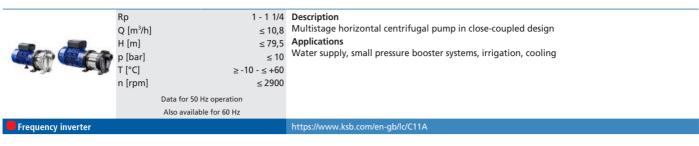
UPA 400 - UPA 1100

UPA D

		DN Q [m ³ /h] H [m] T [°C] Data for 50 Hz operation Also available for 60 Hz	≤ 5000 < 1500	DescriptionMultistage double-entry centrifugal pump in ring-section design for vertical or horizontal installation.ApplicationsPumping clean or slightly contaminated water, seawater, liquefied gases and oils in water supply, offshore and cavern applications and in groundwater management.
--	--	--	------------------	--

UPA S 200

DN Q [m ³ /h] H [m] T [°C] Data for 50 Hz operation Also available for 60 Hz	Single-stage or multistage single-entry centrifugal pump in ring-section design for vertical or horizontal installation. Optionally available with lift check valve or connection branch. For well diameters of 9 inches and above
	https://www.ksb.com/en-gb/lc/U17A


Vertical turbine pumps

B Pump

Q $[m^3/h]$ ≤ 2600 H $[m]$ ≤ 160 p $[bar]$ ≤ 16 T $[^{\circ}C]$ $\geq -10 - \leq +105$ e $[mrrc]$ ≈ 2000	Pumping clean water in agriculture, collection and irrigation, public water supply, industry, tire-
	https://www.ksb.com/en-gb/lc/B60A

High-pressure pumps

Movitec H(S)I

<u>G</u>	Rp Q [m³/h] H [m] p [bar] T [°C] n [rpm]	≤ 27 - 105	operation on a KSB PumpDrive 2 or KSB PumpDrive 2 Eco variable speed system without rotor
KSB SuPremE, PumpDrive, PumpMeter			https://www.ksb.com/en-gb/lc/M06A

Movitec

	Rp DN Q [m³/h] H [m] p [bar] T [°C] n [rpm]	25 - 125 ≤ 160 ≤ 401 ≥ -20 - ≤ +140	Description Multistage vertical high-pressure centrifugal pump in ring-section design with suction and discharge nozzles of identical nominal diameters arranged opposite to each other (in-line design), close-coupled. With KSB SuPremE, a magnetless synchronous reluctance motor (exception: motor sizes 0.55 kW / 0.75 kW with 1500 rpm are designed with permanent magnets) of efficiency class IE4/IE5 to IEC TS 60034-30-2:2016, for operation on a KSB PumpDrive 2 or KSB PumpDrive 2 Eco variable speed system without rotor position sensors. Motor mounting points in accordance with EN 50347, envelope dimensions in accordance with DIN V 42673 (07-2011). ATEX-compliant version available. Applications Spray irrigation, general irrigation, washing, water treatment, fire-fighting and pressure booster systems, hot water and cooling water recirculation, boiler feed systems, etc.
KSB SuPremE, PumpDrive, PumpMeter			https://www.ksb.com/en-gb/lc/M12A

Movitec VCI

		Rp Q [m³/h] H [m] p [bar] T [°C] n [rpm]	≤ 22,5 < 249	
KSB SuPremE, PumpDrive				https://www.ksb.com/en-gb/lc/M94A

Multitec

	DN Q [m³/h] H [m] p [bar] T [°C] n [rpm]	≤ 1500 ≤ 1000 ≤ 100	speed system. ATEX-compliant version available.
KSB SuPremE, PumpDrive	e, PumpMeter		https://www.ksb.com/en-gb/lc/M07A

Axially split pumps

Omega

	DN Q [m ³ /h] H [m] p [bar] T [°C] n [rpm]	≤ 2880 < 210	stations, extraction duties in desalination systems, power stations, fire-fighting systems,
PumpDrive, PumpMeter			https://www.ksb.com/en-gb/lc/O00A

RDLO

	DN Q [m³/h] H [m] p [bar] T [°C] n [rpm]	< 10000	Pumping water with a low solids content, e.g. in waterworks, irrigation and drainage pumping stations, extraction duties in desalination systems, power stations, fire-fighting systems, shipbuilding, district heating or cooling.
PumpMeter, Frequency inverter			https://www.ksb.com/en-gb/lc/R08A

RDLP

Frequency inverter https://www.ksb.com/en-qb/lc/R09A		Q [m³/h] ≤ 1 H [m]	0
--	--	-----------------------	---

Hygienic pumps

Vitachrom

	DN	50 - 125	Description
	Q [m³/h] H [m] p [bar] T [°C]	≤ 340 ≤ 100 ≤ 12 ≥ -30 - ≤ +110	
		Data for 50 Hz operation Also available for 60 Hz	clearances. Its wetted components are made of 1.4404/1.4409 (AISI 316L/CF3M) stainless steel. Vitachrom is EHEDG-certified. All materials comply with FDA standards and EN 1935/2004. ATEX- compliant version available.
			Applications Hygienic handling of fluids in the food, beverage and pharmaceutical industries as well as in the chemical industry.
KSB SuPremE, PumpDriv	e, PumpMe	ter	https://www.ksb.com/en-gb/lc/V00A

Vitacast

	O [m³/h] < 540	IE5 and PumpDrive variable speed system. All wetted components are made of 1.4404/1.4409 (AISI 316L/CF3M) stainless steel. Designed with very little dead volume: open impeller.
KSB SuPremE, PumpDrive	e, PumpMeter	https://www.ksb.com/en-gb/lc/V01A

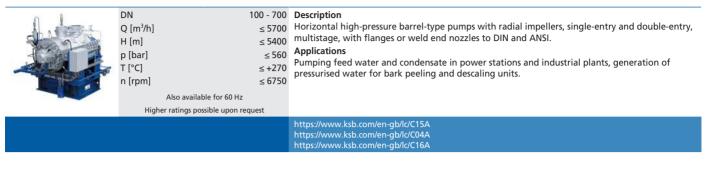
Vitacast Bloc

	⊣ [m] < 105	Service-friendly volute casing pump with magnetless KSB SuPremE motor (exception: motor sizes 0.55 kW / 0.75 kW with 1500 rpm are designed with permanent magnets) of efficiency class IE4/ IE5 and PumpDrive variable speed system. All wetted components are made of 1.4404/1.4409 (AISI 316L/CF3M) stainless steel. Designed with very little dead volume; open impeller, electropolished surface, excellent efficiency. Hygienic design for the highest requirements on cleanability (CIP/SIP-compatible), certified by the TNO Nutrition and Food Research Institute to EHEDG standards. All materials comply with FDA standards and EN 1935/2004. Trolley available among other accessories. ATEX-compliant version available. Applications
KSB SuPremE, PumpDriv	- PumpMeter	Hygienic handling of fluids in the food, beverage and pharmaceutical industries as well as in the chemical industry. https://www.ksb.com/en-gb/lc/V05A

Vitaprime

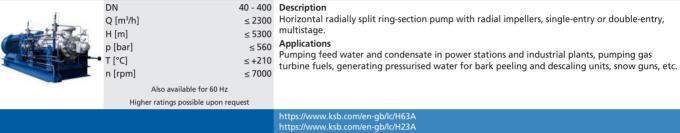
A CONTRACTOR	Also Other ra	< 58	magnets) of efficiency class IE4/IE5 and PumpDrive variable speed system. All wetted components are made of 1.4404/1.4409 (AISI 316L/CF3M) stainless steel. Hygienic design for the highest cleanability requirements (CIP/SIP-compatible). All materials comply with FDA standards and EN 1935/2004. Trolley available among other accessories. ATEX-compliant version available. Applications Hygienic handling of fluids in the food, beverage and pharmaceutical industries as well as in the chemical industry.
KSB SuPremE, PumpDrive	9		https://www.ksb.com/en-gb/lc/V07A

Vitastage


Q [m³/h] H [m] p [bar]	150	Description Multistage centrifugal pump in close-coupled design for vertical or horizontal installation. All wetted components are made of 1.4401/1.4408 (AISI 316/CF8M) stainless steel. Versatile, robust and especially energy-efficient. CIP/SIP-compatible. All materials comply with FDA standards and EN 1935/2004. Trolley also available among other accessing.
T [°C]		EN 1935/2004. Trolley also available among other accessories.
	ata for 50 Hz operation Also available for 60 Hz	Applications Processes with hygienic requirements in the food and beverage industries and in the chemical
Othe	r ratings possible on request	industry. https://www.ksb.com/en-ab//c/V08A

Vitalobe

	DN	25 - 200	Description
	Q [m³/h]	≤ 342	Sturdy rotary lobe pump in hygienic design, bi-directional operation possible, horizontal or
man participa	H [m]	≤ 200	vertical orientation of connections. Hygienic design, excellent CIP/SIP compatibility due to its
	p [bar]	≤ 20	vertical orientation of connections. Hygienic design, excellent CIP/SIP compatibility due to its almost complete lack of dead volume or narrow clearances. All wetted components made of 1.4404/1.4409 (AISI 316L/CF3M) stainless steel; various rotor types, shaft seals and process
A DOLLAR	T [°C]	≥ -40 - ≤ +180	connections available. Installed as a pump set with gear unit and standardised motor. Vitalobe is
	Viscosity [cP]	≤ 200000	
	Data for 50 Hz operation		Accessories include a trolley, a heatable casing or casing cover and a pressure relief arrangement.
	Also available	for 60 Hz	ATEX-compliant version available.
	Other ratings poss	ible on request	Applications
			Hygienic and gentle handling of sensitive or high-viscosity fluids in the food, beverage and pharmaceutical industries, the chemical industry and general process engineering.
KSB SuPremE, PumpDriv	e		https://www.ksb.com/en-gb/lc/V06A


Pumps for power station conventional islands

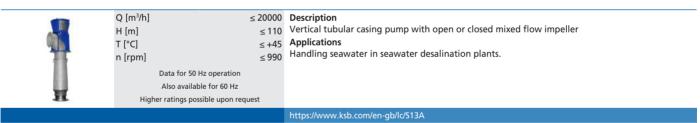
CHTA / CHTC / CHTD

HGB / HGC / HGD

HGI

HGM

	Q $[m^{3}/h]$ ≤ 350 H $[m]$ ≤ 1400	Description Horizontal radially split product-lubricated multistage ring-section pump with radial impellers, axial and radial single-entry inlet. Applications Pumping feed water in power stations, boiler feed systems and condensate transport in industrial plants.
--	---------------------------------------	--


YNK

Q [m³/h] ≤ 520 H [m] < 54	0
	https://www.ksb.com/en-gb/lc/Y01A

Pumps

June Contraction	Q [m ³ /h] ≤ 7 H [m] ≤ p [bar] ≤ T [°C] ≤ +	 Description Vertical spherical casing pump, radial impellers, single-entry, single- to three-stage. Suitable for very high inlet pressures and temperatures. Integrated wet winding motor to VDE. Product-lubricated bearings, no need for oil supply systems. Design to TRD, ASME or IBR. Applications Hot water recirculation in forced-circulation, forced-flow and combined-circulation boilers for very high pressures and in solar power towers. https://www.ksb.com/en-gb/lc/L02A
WKTB		
	H [m] < p [bar] T [°C] ≤ +	 300 Description 500 Vertical can-type ring-section pump on base frame, multistage, first-stage impeller designed as a double-entry suction impeller, radial impellers. Flanges to DIN or ANSI. 500 Applications Pumping condensate in power stations and industrial plants.
		https://www.ksb.com/en-gb/lc/W07A
SEZ		
	H [m] T [°C] ≤	 Description Solution Solution Vertical tubular casing pump with open mixed flow impeller, pump intake with inlet nozzle or suction elbow, pull-out design available, discharge nozzle arranged above- or underfloor, flanges to DIN or ANSI standards available. Applications Pumping raw water, pure water, service water and cooling water in industry, water supply systems, power stations and seawater desalination plants.

SEZT

https://www.ksb.com/en-gb/lc/S10B

PHZ

M	H [m] < 25	 Description Vertical tubular casing pump with mixed flow propeller, pump intake with inlet nozzle or suction elbow, pull-out design available, discharge nozzle arranged above- or underfloor, flanges to DIN or ANSI standards available. Applications Raw water, pure water, service water and cooling water in industry, water supply systems, power stations and seawater desalination plants.
		https://www.ksb.com/en-gb/lc/P05A

PNZ

	Q [m³/h] H [m] T [°C] n [rpm] Data for 50 Hz o Also available fo	≤ 15 ≤ +80 ≤ 990	Description Vertical tubular casing pump with axial propeller, pump intake with inlet nozzle or suction elbow, pull-out design available, discharge nozzle arranged above- or underfloor, flanges to DIN or ANSI standards available. Applications Raw water, pure water, service water and cooling water in industry, water supply systems, power stations and seawater desalination plants.
置	Higher ratings possible	upon request	
			https://www.ksb.com/en-gb/lc/P06A

SNW

I	DN 3 Q [m³/h] H [m] p [bar] T [°C] n [rpm] Data for 50 Hz operation Also available for 60 Hz Higher ratings possible upon requ	≤ 6500 ≤ 60 ≤ 10 ≤ +60 ≤ 1500	Description Vertical tubular casing pump with mixed flow impeller, single-stage, with maintenance-free Residur bearings, discharge nozzle arranged above- or underfloor. Applications Irrigation and drainage, stormwater pumping stations, for raw water and pure water, water supply, cooling water.
			https://www.ksh.com/ep-gh/lc/S14A

PNW

DN 3 Q [m³/h] H [m] p [bar] T [°C] n [rpm] Data for 50 Hz operation Also available for 60 Hz Higher ratings possible upon requ	≤ 9000 ≤ 10 ≤ 10 ≤ +60 ≤ 1500	Description Vertical tubular casing pump with axial propeller, single-stage, with maintenance-free Residur bearings, discharge nozzle arranged above or below floor level. Applications Irrigation and drainage, stormwater pumping stations, for raw water and pure water, water supply, cooling water.
		https://www.ksb.com/en-gb/lc/P02A

Beveron

Q [m ³ /s] H [m] Data for 50 Hz operation Also available for 60 Hz Higher ratings possible upon requ	 Description Concrete volute casing pump with mixed flow impeller, single-stage, with zero-maintenance Residur bearings lubricated by the fluid handled. Applications Coast protection and flood control, irrigation and drainage, low-lift pumping stations, reservoir filling, cooling water, raw and pure water.
	https://www.ksb.com/en-gb/lc/B33A

SPY

NUMBER OF STREET	DN	350 - 1200	Description
	Q [m ³ /h]	≤ 21600	
	H [m]	≤ 50	Applications
N. T	p [bar]	≤ 10	Irrigation, drainage and water supply systems, for pumping condensate, cooling water, service
	T [°C]	≤ +105	water, etc.
	n [rpm]	≤ 1480	
	Data f	or 50 Hz operation	
	Also a	available for 60 Hz	
	Higher ratin	gs possible upon request	
			https://www.ksb.com/en-gb/lc/S15A

Pumps for nuclear power stations

RER

LUV Nuclear

DN Q [m ³ /h] H [m] p [bar] T [°C] Data for 50 Hz operation Also available for 60 Hz	≤ 7000 ≤ 300 ≤ 320 ≤ +430	Applications
		https://www.kch.com/on.ah/lc/12EA

RHM

DN Q [m ³ /h] H [m] p [bar] T [°C] n [rpm] Available for 50 Hz and 60 Hz Higher ratings possible upon requ	≤ 300 ≤ 2100 ≤ 220 ≤ +180 ≤ 8000	systems, emergency feed water systems, start-up and shutdown feed water systems, high-pressure
		https://www.ksb.com/en-qb/lc/R26A

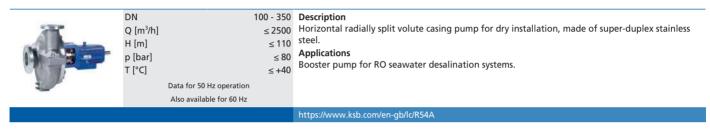
RVM

RHR

	DN		Description
Contraction of the second seco	Q [m³/h]	≤ 6000	Horizontal circular casing pump with forged or cast pressure boundary and diffuser.
100	H [m]	≤ 190	Applications
	p [bar]	≤ 63	Core flooding, emergency cooling and residual heat removal systems, ancillary systems, acid feed
and a	T [°C]	≤ +200	system and low-pressure injection system, component cooling water systems.
A. E.	n [rpm]	≤ 3600	
	Available for 50 Hz and 60 Hz		
			https://www.ksb.com/en-gb/lc/R27A

RVR

		DN Q [m ³ /h] H [m] p [bar] T [°C] n [rpm] Available for 50 Hz and 60 Hz	≤ 6000 ≤ 190 ≤ 63 ≤ +200 ≤ 3600	Description Vertical circular casing pump with forged or cast pressure boundary and diffuser. Applications Core flooding, emergency cooling and residual heat removal systems, ancillary systems, acid feed system and low-pressure injection system, component cooling water systems.
--	--	---	---	--


RVT

Pumps

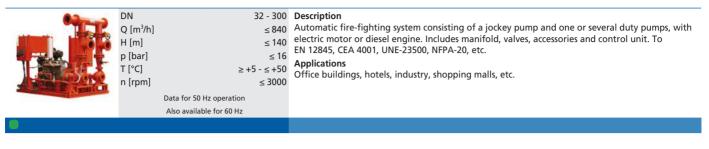
Į.	Q $[m^{3}/h]$ ≤ 1100 H $[m]$ ≤ 131	Applications Low-pressure injection systems, emergency feed water systems, emergency cooling and residual heat removal systems
	Higher ratings possible upon request	
		https://www.ksb.com/en-gb/lc/R63A

Pumps for desalination by reverse osmosis

RP	H-	RO
----	----	----

Multitec-RO

	DN Q [m ³ /h] H [m] p [bar] T [°C] n [rpm]	≤ 850 ≤ 1000 ≤ 100	super duplex stainless steel. Applications High-pressure pump for RO seawater desalination systems and geothermal systems (re-injection
KSB SuPremE, PumpDrive			

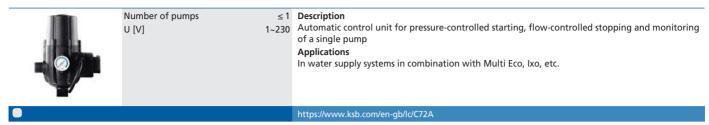

Positive displacement pumps

RC / RCV

https://www.ksb.com/en-gb/lc/R41A			≤ 78 ≤ 100 < 10	Description Helical gear pump, self-priming, with bypass valve, close-coupled design, for horizontal installation with baseplate or vertical installation. With mechanical seal. Applications Fuel feed, handling fuel, lubricating oil and viscous fluids, lubrication systems.
-----------------------------------	--	--	-----------------------	--

Fire-fighting systems

EDS



DU / EU

	Q [m³/h] ≤ 2500 H [m] ≤ 150 p [bar] ≤ 25	Description Automatic fire-fighting system consisting of pumps with electric motor or diesel engine and control unit. To EN 12845, CEA 4001, UNE-23500, NFPA-20, FM, etc. Applications Office buildings, hotels, industry, shopping malls, etc.
--	--	---

Control units

Controlmatic E

Controlmatic E.2

.	Number of pumps U [V]	Description Automatic control unit for pressure-controlled starting, flow-controlled stopping and monitoring of a single pump Applications In water supply systems in combination with Multi Eco, Ixo, etc.
		https://www.ksb.com/en-gb/lc/C72A

Cervomatic EDP.2

Consumation (2002)	Number of pumps U [V]	Description Automatic control unit for pressure-controlled starting and either pressure-controlled or flow-controlled stopping and monitoring of a single pump. Applications In water supply systems with pumps of the Multi Eco, Ixo, etc. type series with single-phase or three-phase motors
		https://www.ksb.com/en-gb/lc/C19A

LevelControl Basic 2

 	 Description Level control unit for controlling and protecting either one or two pumps. DOL starting up to 4 kW, star-delta starting up to 22 kW. Higher ratings on request. Applications Tank drainage using float switches, digital switches, 420 mA, pneumatic (without compressor) or bubbler system in building services and waste water applications. Tank filling using float switches, digital switches, digital services and water supply applications.
	https://www.ksh.com/op.gh/k/J200

UPA Control

Number of pumps P [kW] U [V]	≤1 3 1~230/3~400	Description The KSB switchgear is suitable for level control and protection of submersible borehole pumps, submersible motor pumps and dry-installed pumps with single-phase AC motors 1~230 V or three-phase motors 3~230 / 400 V / 50 Hz. The motor is started DOL. Enclosure: IP56, dimensions: $205 \times 255 \times 170$ mm (H × W × D). Applications Irrigation and filling or draining tanks in water supply applications in combination with 4-inch and 6-inch pumps.
		https://www.ksb.com/en-gb/lc/U05A

Hyatronic N

0		Description Pump control system in control cabinet for cascade starting and stopping of up to six pumps.
	P [kW] 22 U [V] 3~400	Applications
6444	Available for higher ratings and other mains voltages on request.	For draining tanks and sumps in drainage and waste water disposal applications. For filling tanks in water supply applications. Level measurement using float switch or 420 mA sensor.

Monitoring and diagnosis

Amacontrol

attender to	Connections	Spring-loaded	
		terminals	Protection module for water and waste water products as all-in-one device. Depending on the
	Mounting	35 mm standard	variant, it can be used for motor temperature measurement, bearing temperature measurement,
		rail	leakage measurement, vibration measurement, voltage measurement and current measurement as well as for diagnosing a pump, pump system or submersible mixer to ensure trouble-free and
	T [°C]	≥ -30 - ≤ +70	reliable operation.
ARE LEVEL	Dimensions		Applications
A COLOR OF THE OWNER	H × W ×D [mm]	127,2 × 45 × 113,6	In water and waste water systems in combination with Amacan, Amamix, Amaprop, Amaline,
	U [V]	AC 115-230 ± 10%	Amarex KRT or Sewatec
	U [V]	AC/DC 24 ± 10%	
			https://www.ksb.com/en-gb/lc/A75B

Legal information/Copyright

Product Portfolio Pumps I Automation

All rights reserved. The contents provided herein must neither be distributed, copied, reproduced, edited or processed for any other purpose, nor otherwise transmitted, published or made available to a third party without the manufacturer's express written consent.

Subject to technical modification without prior notice.

© KSB SE & Co. KGaA, Frankenthal 09/12/2021

KSB SE & Co. KGaA Johann-Klein-Straße 9 • 67227 Frankenthal (Germany) Tel. +49 6233 86-0 www.ksb.com